期刊文献+

结构化表面环境下软磨粒流的流场数值分析 被引量:14

Numerical analysis of soft abrasive flow in structured restraint flow passage
下载PDF
导出
摘要 为了研究模具结构化表面环境下软性磨粒流的流场加工特性,应用单颗动力学模型(SPD)通过数值模拟求解了颗粒在不同形态的湍流场中的运动特性。以U形流道为例,利用N-S方程、湍流的Realizable(k-ε)模型以及压力耦合方程的半隐相容(SIMPLEC)算法,求解了软性磨粒两相流场中流体的速度、压力等特性参数;接着利用SPD求解多种环境下软性磨粒两相流场中颗粒的速度、轨迹、密度分布等参数。实验结果表明:在流体初始速度为5,10,20m/s 3种情况下,流体初始速度为5m/s时颗粒沉降最为明显;在颗粒直径为0.01,0.05,0.1mm 3种情况下,直径为0.01mm时颗粒沉降较为明显;在水、柴油、机油3种不同黏度的湍流场中,两相软性磨粒流场特性非常接近。结论显示,流体的初始速度和颗粒的粒径使得湍流对颗粒运动特性影响较大,流体的黏性对其影响较小。 In order to explore machining characteristics of the soft abrasive flow field in a structured mold surface,the Single Dynamics Model(SPD) was applied to the solution to the motion characteristics of particles in different types of turbulence fields numerically.By taking a U-shaped flow passage for an example, the velocity and pressure of fluid in a two-phase soft abrasive flow field were solved by using the N-S equations,a Realizable k-ε model of turbulence and the SIMPLEC method.Then the velocity,locus and the density of particles in the two-phase field were also obtained by the SPD model.The results are that when the initial fluid velocities are 5,10 and 20 m/s,the particle deposition is the largest for the first case.When the particle diameters are 0.01,0.05 and 0.1 mm,the first value causes the particle deposition to be most obvious.In turbulence fields with different viscosities,the water,gas-oil and engine-oil show similar two-phase soft abrasive flow characteristics.It concludes that the initial velocity of the fluid field and the diameters of particles have more severe effect on the moving characteristics of particles,and the viscosity of the fluid influences them the least.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2011年第9期2092-2099,共8页 Optics and Precision Engineering
基金 国家自然科学基金面上项目(No.50875242 No.50905163) 浙江省自然科学基金重点项目(No.Z107517)
关键词 模具抛光 结构化表面 软磨粒流加工 单颗动力学模型 数值模拟 die polishing structured surface soft abrasive flow machining single particle dynamic model numerical simulation
  • 相关文献

参考文献12

  • 1EKKARD B, OLTMANN R, ALEXANDER G. Finishing of structured surfaces by abrasive polishing[J]. Precision Engineering.2006,30(3):325-336.
  • 2JI ShiMing1,2, XIAO FengQing1,2 & TAN DaPeng1,2 1Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, (Zhejiang University of Technology), Ministry of Education, Hangzhou 310014, China,2Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology of Zhejiang Province, Hangzhou 310014, China.Analytical method for softness abrasive flow field based on discrete phase model[J].Science China(Technological Sciences),2010,53(10):2867-2877. 被引量:29
  • 3RAJENDRA K J, JAIN V K, DIXIT P M. Modeling of material removal and surface roughness in abrasive flow machining process[J].International Journal of Machine Tools & Manufacture.1999,39(12):1903-1923.
  • 4JAIN V K, ADSUL S G. Experimental investigations into abrasive flow machining(AFM)[J]. International Journal of Machine Tools & Manufacture.2000, 40(7):1003-1021.
  • 5GORANA V K, JAIN V K, LAL G K. Prediction of surface roughness during abrasive flow machining[J].The International Journal of Advanced Manufacturing Technology.2006, 31(3-4):258-267.
  • 6方慧,郭培基,余景池.液体喷射抛光技术材料去除机理的有限元分析[J].光学精密工程,2006,14(2):218-223. 被引量:28
  • 7HOWARD H H, PATANKAR N A, ZHU M Y. Direct numerical simulations of fluid-solid systems using the arbitrary lagrangian-eulerian technique[J].Journal of Computational Physics.2001, 169(2):427-462.
  • 8邓永波,张平,杜新,吴一辉,刘震宇,刘永顺.亲/疏水性不同壁面组成微通道的深宽比与通道内液体的自发毛细流动[J].光学精密工程,2010,18(7):1562-1567. 被引量:8
  • 9SHIH T H, LIOU W W, SHABBIR A, et al.. A new eddy viscosity two-equation model for high Renolds number turbulent flows[J]. Computer Fluids, 1995,24(3):227-238.
  • 10HAIDER A, LEVENSPIEL O. Drag coefficient and terminal velocity of spherical and nonspherical particles[J]. Powder Technology, 1989, 58(1):63-70.

二级参考文献30

共引文献61

同被引文献97

引证文献14

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部