期刊文献+

层合薄壁圆柱壳1:1内共振研究 被引量:2

Study on 1:1 internal resonance of thin laminated circular cylindrical shells
下载PDF
导出
摘要 针对一端固定,一端自由的层合薄壁圆柱壳模型,根据Donnell’s非线性简化壳理论建立其非线性振动方程。采用Galerkin方法对非线性振动方程进行离散化,应用平均法对系统包含两个相邻轴向模态的非线性振动响应进行了解析分析,与数值模拟进行了比较,并得到了不同参数对层合薄壁圆柱壳复杂的振动响应的影响。结果表明,1)由于所选的两个相邻轴向模态频率相距较近,能量在两个模态之间相互传递,系统存在1∶1内共振现象;2)系统复杂的振动响应受激振力大小的影响比较大,而对于阻尼不敏感。 A cantilever thin laminated circular cylindrical shell was investigated.Based on Donnell's nonlinear shallow shell theory,nonlinear wave equation of the system was derived,in which the effects of dynamic Young's modulus,damping and geometric large-amplitude were considered.Galerkin method was used to disperse the wave equation.Applying averaging method,the nonlinear response of the system was solved with two neighboring axial modes participation,and the results obtained were compared with those gained by numerical method.The effects of different parameters on the complex dynamic response were also investigated.The results show that: due to the frequencies of the two modes selected are very close,there exists 1∶ 1 internal resonance in the system;the complex vibration response of the system is affected by exciting force evidently,but it is not very sensitive to damping.
出处 《振动与冲击》 EI CSCD 北大核心 2011年第9期10-14,共5页 Journal of Vibration and Shock
基金 国家自然科学基金 上海宝钢集团公司联合资助(50574019)
关键词 层合圆柱壳 内共振 平均法 非线性 Donnell’s理论 laminated circular cylindrical shell internal resonance averaging method nonlinearity Donnell's theory
  • 相关文献

参考文献13

  • 1Wouters C R. Large amplitude free vibrations of shallow spherical shell and cylindrical shell [ J ]. International Journal of Nonlinear Mechanics, 1985, 20(2) : 69 -78.
  • 2王延庆,郭星辉,常海红,巴颖.旋转薄壁圆柱壳振型进动的非线性振动特性[J].固体力学学报,2009,30(3):267-279. 被引量:5
  • 3Huang K H, Dasgupta A. A layer-wise analysis for free- vibration of thick composite cylindrical-shells [ J ]. Journal of Sound and Vibration, 1995, 186(2) : 207 -222.
  • 4Ganapathi M, Kvaradan T. Nonlinear free flexural vibrations of laminated circular cylindrical shells [ J ]. Composite Structures, 1995, 30(1): 33-49.
  • 5Amabili M, Pellicano F, Paidoussis M P. Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part III: Truncation effect without flow and experiments [ J]. Journal of Sound and Vibration, 2000, 237 (4) : 617 -640.
  • 6白鸿柏,张培林,陈振藩.密集模态组间非线性相互作用的初步研究[J].航空学报,2000,21(5):458-461. 被引量:5
  • 7Oliver T, Touze C, Chaigne A. Non-linear vibration of free- edge thin spherical shells : modal interaction rules and 1 : 1 : 2 internal resonance [ J ]. International Journal of Solids and Structures, 2005, 42( 11 - 12) : 3339 - 3373.
  • 8Abe A, Kobayashi Y, Yamada G. Nonlinear dynamic behaviors of clamped laminated shallow shells with one-to-one internal resonance [ J ]. Journal of Sound and Vibration, 2007, 304:957 - 968.
  • 9沈观林.复合材料力学[M].北京:清华大学出版社,1995.269.
  • 10李健,郭星辉,郭明涛,颜云辉.复合材料薄壁圆柱壳动态弹性模量的研究[J].东北大学学报(自然科学版),2008,29(12):1770-1773. 被引量:7

二级参考文献17

  • 1陈振藩,白鸿柏.结构的模态运动的非线性调制与平均Lagrange函数(A.L.F)[J].非线性动力学学报,1995,2(1):54-63. 被引量:2
  • 2李健,李红影,郭星辉.圆柱壳几何大变形非线性频率求解的渐近摄动法[J].振动与冲击,2007,26(3):42-44. 被引量:1
  • 3陈振藩,白鸿柏.密频内共振导致的响应饱和[J].非线性动力学学报,1996,3(1):40-50. 被引量:1
  • 4Sakaguchi R L, Wiltbank B D, Murchison C F. Prediction of composite elastic modulus and polymerization shrinkage by computational micromechanics [ J ]. Dental Materials, 2004,20 (4) : 397 - 401.
  • 5Kostopoulos V, Loutas T H, Sotiriadis G. On the Young' s modulus measurements of ceramic and carbon fibres using elastic wave propagation techniques: comparison against quasi-static tensile tests [J ]. Advanced Composites Letters, 2004,13(2) : 131 - 137.
  • 6Jinen E, Tanaka M, Maeda T, et al. Changes of dynamic modulus of polyethylene steel composites under repeated plane bending[ J ]. Chemistry of High Polymers, 1971,28 (3) : 968 - 972.
  • 7Gilbert J L, Dong D R. Numerical time-frequency transform technique for the determination of the complex modulus of composite and polymeric biomaterials from transient timebased experiments [ C ]//Proceedings of the Symposium on Biomaterials' Mechanical Properties. Pittsburgh, 1992 : 14 - 18.
  • 8Yeh G C K. Forced vibration of a two-degree-of-freedom system with combined Coulomb and viscous damping [J ]. Journal of Acoustical Society of America, 1964,39 ( 1 ) : 15 - 24.
  • 9Fox C H J, Hardie D J W. Harmonic response of rotating cylindrical shell[J]. Journal of Sound and Vibration, 1985, 101(4) :495 - 510.
  • 10Werner S. Vibrations of shells and plates[M]. New York: Marcel Dekker, 1981:135-151.

共引文献28

同被引文献27

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部