期刊文献+

时间序列不确定数据流中异常数据检测方法 被引量:2

An anomaly detection method for time-series uncertain data streams
下载PDF
导出
摘要 结合小波分析和不确定聚类方法的优点,提出一种基时间序列不确定数据流的异常数据检测方法,该方法主要考虑数据流中元组的不确定性,同时平衡检测的计算代价与检测精度。仿真实验证明,该检测方法能够良好地适应数据流的不确定性,在一定条件下可获得相当好的检测效果。 An anomaly detection method for uncertain data streams that combines wavelet analysis and uncertainty clustering is proposed. Taking the uncertainty anomaly detection into account, the minimum computation for reducing the computational cost of detection are estimated at the same time. Experimental results on actual data source show that this method can adapt to the uncertain of data streams well and provide precise instantaneous detection under certain conditions.
作者 徐雪松
出处 《电子设计工程》 2011年第19期19-21,共3页 Electronic Design Engineering
基金 南京中医药大学校青年自然科学基金项目(09XZR27)
关键词 不确定数据流 小波分析 异常检测 uncertain data streams wavelet analysis anomaly detection
  • 相关文献

参考文献6

  • 1周春光,邢辉,徐振龙,王哲.商业数据的预测模型及其算法研究[J].吉林大学学报(信息科学版),2002,20(3):53-60. 被引量:15
  • 2JAIN A, CHANG E Y,WANG Yuan-Fang. Adaptive stream resource management using Kalman filters [C] //Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. Paris, France, USA: ACM Press, 2004:11-22.
  • 3FALOUTSOS C. Stream and sensor data mining. [C]// Proceedings of the 9th International Conference on Extending Database Technology. Heraklion, Greece, Berlin: Springer-Verlag, LNCS, 2004: 25-27.
  • 4CORMODE G, McGregor A. Approximation algorithms for clustering uncertain data[J]. In ACM Principles of Database Systems (PODS), 2008 : 191-200.
  • 5彭玉华.小波变换与工程应用[M].北京:科学出版社,2003..
  • 6王胜坤.JPEG2000中小波变换的FPGA实现[D].山西:太原理工大学,2007.

二级参考文献8

共引文献76

同被引文献28

  • 1MUTHUKRISHNAN S. Data streams algorithms and applications [ C ]//Proc of the 14th Annual ACM-SLAM Symposium on Discrete Algorithms. 2003:413-413.
  • 2BABCOCK B, BAHU S, DATER M,et al. Models and issues in data stream systems[ C]// Proc of the 21st ACM Symposium on Principles of Database Systems. 2002 : 1-16.
  • 3KIM S, PARK S, CHU W W. An index-based approach for similarity search supporting time warping in large sequence databases [ C ]// Proc of the 17th International Conference on Data Engineering. 2001 : 607-614.
  • 4YI B K, JAGADISH H V, FALORTSOS C. Efficient retrieval of similar time sequences under time warping [ C ]//Proc of the 14th Interrta- tional Conference on Data Engineering. 1998:451-457.
  • 5KEOGH E. Exact indexing of dynamic time warping[ C ]//Proc of the 28th International Conference on Very Large Data Bases. 2002:406- 417.
  • 6KEOGH E, LI Wei, XI Xiao-peng, et al. LB Keogh supports exact indexing of shapes under rotation invariance with arbitrary representa- tions and distance measures[ C]//Proc of the 32nd Very Large Da- tabases Conference. 2006,223- 227.
  • 7LI Wei, KEOGH E, Van HERLE H, et al. Atomic wedgie : efficient query filtering for streaming time series[ C]//Proc of the 5th IEEE International Conference on Data Mining. 2005 : 490-497.
  • 8ZHU Yun-yue. High performance data mining in time series: tech- niques and case studies [ D ]. New York: New York University, 2004.
  • 9KEOGH E, PAZZANI M. A simple dimensionality reduction tech- nique for fast similarity search in large time series databases [ C ]// Proc of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2000 : 122-133.
  • 10SHOU Yu-tao, MAMOULIS N, CHEUNG D W. Fast and exact warping of time series using adaptive segmental approximations [ J]. Machine Learning,2005,7(3 ) :231-267.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部