期刊文献+

基于加权模糊C均值聚类算法的变压器故障诊断 被引量:5

Fault Diagnosis on Transformer Based on Weighted Fuzzy C-means Clustering Algorithm
下载PDF
导出
摘要 模糊C均值聚类(FCM)算法具有将数据集合进行相等划分的趋势,每一个样本对数据集分类的影响相同。在变压器绝缘故障中,不同故障类型产生的主要特征气体及气体组分含量存在很大差异。因此,为了区别各类数据对故障划分的影响程度,可考虑对各类数据施加一个权。文中提出了一种加权模糊C均值聚类(WFCM)算法,该算法可实现故障聚类。与FCM算法相比,WFCM算法明显提高了故障划分的正确性和鲁棒性。 The fuzzy c-means clustering (FCM)algorithm has the trend of dividing data sets equally,the effect of each sample on classification of the data sets is the same. In the insulation fault of transformer, different types of fault produce different main characteristic gasses and the components. Therefore,in order to distinguish the influence degree of all kinds of data on fault partitioning ,this paper uses the weights to express the relative degree of the importance of various data in fault partitioning, and presents a weighted fuzzy c-means clustering algorithm which can accomplish fault clustering. Compared with FCM algorithm, the proposed algorithm obviously improved the accuracy and robustness of the fault partitioning.
出处 《陕西电力》 2011年第9期39-41,共3页 Shanxi Electric Power
关键词 变压器 故障诊断 加权 模糊C均值聚类 transformer fault diagnosis weighted FCM
  • 相关文献

参考文献7

二级参考文献24

共引文献236

同被引文献56

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部