期刊文献+

挖掘与类风湿病相关基因功能模块及模块的拓扑性质

Mining gene functional modules associated with rheumatoid arthritis and their corresponding topological properties analysis
下载PDF
导出
摘要 背景:类风湿病是一种复杂的多基因遗传病,很多传统的遗传学方法难以分析高通量的类风湿病数据,从而挖掘出与疾病相关的遗传标记。目的:挖掘与类风湿病相关的基因功能模块及研究基因功能模块的拓扑性质。方法:对类风湿性病数据(WTCCC数据)先提取风险SNP并将风险SNP通过UCSC数据库映射到基因上,此后又将基因映射到蛋白质网络中,通过对网络结构的分析获得基因功能模块,特别对一些显著的基因功能模块进行了拓扑性质的研究。结果与结论:这些风险基因功能模块的拓扑性质与参考的KEGG通路数据库有显著的不同。 BACKGROUND:Rheumatoid arthritis(RA) is a complex polygene genetic disease.High throughput SNP genotype data made traditional genetics analysis get into trouble to identify important markers associated with disease.OBJECTIVE:To mine gene functional modules associated with RA and to perform their corresponding topological properties analysis.METHODS:For GWA data set-Wellcome Trust Case Control Consortium(WTCCC) for RA,we extracted risk SNPs firstly and mapped these risk SNPs to genes with UCSC database.The acquired risk genes were mapped to protein-protein interaction network and the gene function modules were extracted by analyzing the structure of network.Especially,for some significant risk gene modules,we focused on their topological properties analysis.RESULTS AND CONCLUSION:When comparing the network topological properties of the gene function modules with pathways from the KEGG database,we found that they clearly differ from those of most disease-related KEGG pathways.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2011年第35期6615-6618,共4页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 北京市教育委员会科技计划面上项目(已获批:KM201210025)~~
  • 相关文献

参考文献24

  • 1Li C,Zhang G,Li X,et al.A systematic method for mapping multiple loci:an application to construct a genetic network for rheumatoid arthritis.Gene.2008; 408(1):104-111.
  • 2Michael Morley,Cliona Molony.Enetic analysis of genome-wide variation in human gene expression.Nature.2004;430(7001):743-747.
  • 3Sherborne AL,Houlston RS.What are genome-wide association studies telling us about B-cell tumor development? Oncotarget.2010;1(5):367-372.
  • 4Fletcher O,Johnson N,Orr N,et al.Novel breast cancer susceptibility locus at 9q31.2:results of a genome-wide association study.J Natl Cancer Inst.2011; 103(5):425-35.
  • 5Li X,Rao S,Wang Y,et al.Gene mining:a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling.Nucleic Acids Res.2004;32(9):2685-2694.
  • 6Clark SA,Hickey JM,van der Werf JH.Different models of genetic variation and their effect on genomic evaluation.Genet Sel Evol.2011;17(43):18.
  • 7Guo Z,Li X,Rao S,et al.Multivariate sib-pair linkage analysis of longitudinal phenotypes by three step-wise analysis approaches.BMC Genet.2003;4 Suppl 1:S68.
  • 8Wellcome Trust Case Control Consortium.Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.Nature.2007;447(7145):661-678.
  • 9Chen M,Cho J,Zhao H.Detecting epistatic SNPs associated with complex diseases via a Bayesian classification tree search method.Ann Hum Genet.2011;75(1):112-121.
  • 10Huang W,Wang P,Liu Z,et al.Identifying disease associations via genome-wide association studies.BMC Bioinformatics.2009; 10 Suppl 1:S68.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部