期刊文献+

基于二维小波变换的图像压缩新算法

A New Image Compression Algorithm Based on Two-dimensional Wavelet Transform
下载PDF
导出
摘要 为了实现快速、高质量的图像传输,用尽可能少的小波系数高质量地表征图像,提出了一种基于二维小波变换的图像压缩算法。首先将图像进行二维小波分解,得到各子带的一系列小波系数;其次保留图像低频子带的所有小波系数;然后根据归一化能量序列熵准则提取其他各层子带重要系数,即在某一门限下剩余系数熵值与剩余系数最大熵值比值较大(0.9左右)时,可以忽略这些小波系数,从而实现数据压缩;最后将各子带重要系数进行量化、编码。接收端根据接收到的数字信号重构图像信号。实验中对图像信号进行了压缩实验,验证了所提算法的正确性和有效性。实验结果表明本算法简单可行、搜索量小,为图像压缩找到了一种新的有效方法,具有一定的实际应用价值。 In order to realize high-speed image transmission with high-quality and use minimum wavelet coefficients to display the image,an image compression algorithm is proposed based on two-dimensional wavelet transformation.Firstly,the image is decomposed with two-dimensional wavelet to obtain a series of wavelet coefficients for each subband.Secondly,all wavelet coefficients of low-frequency subband are retained.Thirdly,important coefficients are extracted according to entropy criterion of normalized energy sequence.When the ratio of remainder coefficients'entropy value and its maximum entropy value is relatively big(0.9 or so),these remainder coefficients can be neglected and data compression is realized.Finally,important coefficients of each subband are quantized and encoded.In the receiving terminal the image is reconstructed according to received digital signal.Experiments with compressed image signals verify the correctness and effectiveness of this algorithm.The results have shown that this algorithm is simple and feasible,and its search workload is small.It provides a new effective method for image compression and has practical application value.
出处 《南京邮电大学学报(自然科学版)》 2011年第4期61-66,共6页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(60902065)资助项目
关键词 二维小波变换 图像压缩 能量序列 熵准则 two-dimensional wavelet transform image compression energy sequence entropy criterion
  • 相关文献

参考文献13

  • 1Goswami J C,Chan A K.小波分析理论、算法及其应用[M].许天周,黄春光,译.北京:国防工业出版社,2007.
  • 2SHAPIRO J M. Embedded image coding using zerotrees of wavelet coefficients [ J ]. IEEE Trans on Signal Processing, 1993,41 : 3445 - 3462.
  • 3MOHAMMED U S. Highly scalable hybrid image coding scheme [ J ]. Digital Signal Processing,2008,18:364 - 374.
  • 4PAN Hong, SIU Wanchi, LAW N F. A fast and low memory image coding algorithm based on lifting wavelet transform and modified SPIHT [ J ]. Signal Processing: Image Communication, 2008,23 : 146 - 161.
  • 5唐强,孙发鱼,于敏.一种改进的无链表小波零树编码算法[J].计算机与数字工程,2006,34(5):47-49. 被引量:2
  • 6LATTE M V,AYACHIT N H,DESHPANDE D K. Reduced memory listless speck image compression [ J]. Digital Signal Processing, 2006,16:817 - 824.
  • 7王强,卓力,王素玉,沈兰荪.几种小波图像编码方法的比较[J].电路与系统学报,2009,14(6):105-110. 被引量:4
  • 8ZHANG Haijun,CHOW T W S,RAHMAN M K M. A novel dual wing harmonium model aided by 2-D wavelet transform subbands for document data mining [ J ]. Expert Systems with Applications, 2010,37:4403 - 4412.
  • 9徐长发 李国宽.实用小波方法[M].武汉:华中科技大学出版社,2004..
  • 10李建勋,柯熙政,郭华.小波方差与小波熵在信号特征提取中的应用[J].西安理工大学学报,2007,23(4):365-369. 被引量:29

二级参考文献23

  • 1苏义脑,窦修荣.随钻测量、随钻测井与录井工具[J].石油钻采工艺,2005,27(1):74-78. 被引量:93
  • 2何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究[J].中国电机工程学报,2005,25(5):38-43. 被引量:188
  • 3杨艺,李建勋,柯熙政.小波方差在信号特征提取中的应用[J].传感器世界,2006,12(1):33-35. 被引量:11
  • 4Shapiro J M. Embedded image coding using zerotrees of wavelet coefficients [J]. IEEE Transactions on Signal Processing, 1993, 41(12): .3445-3462.
  • 5Said A, Pearlman W A. A new, fast, and efficient image codec based on set partitioning in hierarchical trees [J]. IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(3): 243-250.
  • 6Pearlman W A, Islam A, Nagaraj N, Said A. Efficient, low-complexity image coding with a set-partitioning embedded block coder [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(11): 1219-1235.
  • 7Fowler J E. Shape-adaptive coding using binary set splitting with k-d trees [A]. In Proceedings of the IEEE International Conference on Image Processing [C]. Singapore, 2004, Vol 2, 1301-1304.
  • 8Xiong Z, Ramchandran K, Orchard M T. Space-frequency quantization for wavelet image coding [J]. IEEE Transactions on Image Processing, 1997, 6(5): 677-693.
  • 9Tian J, Wells R O, Jr. Embedded image coding using wavelet difference reduction [J]. In Wavelet Image and Viden Compression [C]. P N Topiwala, Ed., Kluwer, Boston, MA, 1998. 289-301.
  • 10Simard P, Steinkraus D, Malvar H. On-line adaptation in image coding with a 2-D tarp filter [A]. In Proceedings of the IEEE Data Compression Conference [C]. J A Storer, M Cohn, Eds., SNowbird, UT, 2002-04. 422-431.

共引文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部