期刊文献+

锂离子电池用具有分级三维离子电子混合导电网络结构的纳微复合电极材料 被引量:3

Nano-/micro- composite electrodes with hierarchicalthree-dimensional mixed conducting networks for lithium-ion batteries
原文传递
导出
摘要 文章评述了分级三维离子电子混合导电网络结构和具有该结构的纳微复合电极材料在锂离子电池中的应用等方面的最新研究工作进展.首先介绍了纳微复合电极结构相关概念及其优缺点,然后列举了一些运用此概念设计并构筑出的电极材料实例.研究证明,此新型电极结构能够大幅提高锂离子电池电极材料的储锂性能,并且该结构设计还可推广到其他电化学储能器件中. This article reviews recent progress in nano-/micro- composite electrodes with hierarchical three-dimensional mixed conducting networks for lithium-ion batteries. First, we describe the concept and advantages of the nano-/micro-composite structure with three-dimensional mixed conducting networks. Secondly, we present some examples in which this concept was successfully realized in the electrode design for Li batteries. It has been demonstrated that the storage performance can be significantly improved in such new nanostructure designs. This concept can also be extended to the electrode structure design in other electrochemical devices.
出处 《物理》 CAS 北大核心 2011年第10期643-647,共5页 Physics
基金 国家高技术研究发展计划(批准号:2009AA033101) 国家重点基础研究发展计划(批准号:2011CB935700) 国家自然科学基金(批准号:50972164 50730005)资助项目 中国科学院重要方向性项目(批准号:KJCX2-YW-W26) 中国科学院"百人计划"资助项目
关键词 三维混合导电网络 纳微复合材料 锂离子电池 three-dimensional mixed conducting networks nano-/micro-composite lithium-ion batteries
  • 相关文献

参考文献30

  • 1Whittingham S M. Chem. Rev. ,2004,104:4271.
  • 2Bruce P G, Scrosati B, Tarascon M Jet al. Nat. Mater. , 2005, 4;366.
  • 3Bruce P G,Scrosati B,Tarascon M J. Angew. Chem. Int. Ed. , 2008,47:2930.
  • 4Armand M, Tarascon M J. Nature, 2008,451 :652.
  • 5Guo Y G,Hu J S,Wan L J. Adv. Mater. ,2008,20:2878.
  • 6Li H,Wang Z X, Chen L Qetal. Adv. Mater. ,2009,21:4593.
  • 7Hu Y S,Kienle L,Guo Y G etal. Adv. Mater. ,2006,18:1421.
  • 8Jiao F,Bruce P G. Adv. Mater. ,2007,19:657.
  • 9Maier J. Phys. Chem. Chem. Phys. ,2009,17:3011.
  • 10Balaya P. Energy Environ. Sci. , 2008,1:645.

同被引文献97

  • 1Kempa T J, Day R W, Kim S-K, et al. Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ Sci, 2013, 6: 719-733.
  • 2Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective. J Am Chem Soc, 2013, 135: 1167-1176.
  • 3Bruce P G, Scrosati B, Tarascon J M, et al. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed, 2008, 47: 2930-2946.
  • 4Wang Z L, Wu W Z. Nanotechnology-enabled energy harvesting for self-powered micro-nanosystems. Angew Chem Int Ed, 2012, 51: 11700-11721.
  • 5Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices. Science, 2011, 334: 928-935.
  • 6Lim J, Hippalgaonkar K, Andrews S C, et al. Quantifying surface roughness effects on phonon transport in silicon nanowires. Nano Lett, 2012, 12: 2475-2482.
  • 7Zhao Y L, Xu L, Mai L Q, et al. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. Proc Natl Acad Sci USA, 2012, 109: 19569-19574.
  • 8Xu L, Jiang Z, Qing Q, et al. Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett, 2013, 13: 746-751.
  • 9Lu W, Lieber C M. Nanoelectronics from the bottom up. Nat Mater, 2007, 6: 841-850.
  • 10Hochbaum A I, Yang P D. Semiconductor nanowires for energy conversion. Chem Rev, 2010, 110: 527-546.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部