期刊文献+

离散混沌系统的同步与参数识别 被引量:1

Synchronization and parameters identification of discrete chaotic systems
下载PDF
导出
摘要 研究了驱动系统为参数未知的离散混沌系统时的同步问题,通过设计响应系统中的参数与控制器,实现驱动-响应系统的同步,识别出驱动系统的未知参数。基于离散系统的Lyapunov稳定性定理,给出了理论推导。以离散Hénon混沌系统为例进行了数值仿真,验证了该方法的有效性。 This paper studies the problem of synchronization when the driving system is a discrete chaotic system with unknown parameters.By designing the parameters and controller in the response system, the synchronization in the driving-response systems is achieved.Moreover,the unknown parameters in the driving system are identified.Based on the Lyapunov sta- bility theorem of the discrete system, theoretical result is proposed.In addition, the discrete H6non map is taken for iUustration and verification.
机构地区 江南大学理学院
出处 《计算机工程与应用》 CSCD 北大核心 2011年第29期12-14,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.11002061) 中央高校基本科研业务费专项资金(No.JUSRP11117)
关键词 离散混沌系统 同步 参数识别 Lyapunov定理 discrete chaotic system synchronization parameters identification Lyapunov theorem
  • 相关文献

参考文献13

  • 1Lorenz.Deterministic non-periodic flow[J].J Atmos Sci, 1963,20: 130-141.
  • 2Pecora L M,Carroll T L.Synchronization in chaotic systems[J]. Phys Rev Lett,1990,64:821-824.
  • 3Shilnikov L P.Chua's circuit:rigorous results and future prob- lems[J].Int J Bif Chaos, 1997,7(3):665-669.
  • 4Stcfanski K.Modelling chaos and hyperchaos with 3-D maps[J]. Chaos, Solitons and Fractals, 1998,9: 83-93.
  • 5Grassi G,Miller D A.Theory and experimental realization of observer-based discrete-time hypercb_aos synchronization[J].IEEE Trans on Circ Syst 1,2002,49:373-378.
  • 6张庆灵,吕翎.基于线性可逆性变换的混沌同步控制[J].信息与控制,2008,37(1):68-72. 被引量:2
  • 7王燕舞,关治洪,王华.基于单变量耦合控制的混沌同步研究[J].信息与控制,2003,32(2):185-188. 被引量:4
  • 8闵富红,王执铨.非线性耦合统一混沌系统的同步[J].控制与决策,2005,20(12):1342-1345. 被引量:1
  • 9Chen S H,Lu J H.Synchronizing chaotic systems in striet-feedbaek form using a single controller[J].Phys Lett A,2002,299:353-358.
  • 10Chen S H, Ja H,Wang C P,et al.Adaptive synchronization of uncertain rtissler hyperehaotic system based on parameter idea- tification[J].Phys Lett A,2004,321:50-55.

二级参考文献27

共引文献4

同被引文献11

  • 1郭书祥.参数不确定系统鲁棒镇定控制器设计的鲁棒可靠性方法[J].系统工程与电子技术,2007,29(10):1699-1703. 被引量:5
  • 2Ghulchak A. Robustly control under parametric uncertainty via primal-dual convex analysis[J].IEEE Transactions on Automatic Control,2002,(04):632-636.
  • 3Kuo B C. Digital control systems[M].Michigan:Saunders College Publishing,1992.
  • 4Joo Y H,Chen G,Shieh L S. Hybrid state-space fuzzy model based controller with dual-rate sampling for digital control of chaotic systems[J].IEEE Trans on Fuzzy Systerms,1999,(02):394-408.
  • 5Wang C,Park J B,Joo Y H. Design of sampled-data fuzzy-model-based control systems by using intelligent digital redesign[J].IEEE Trans on Circuits Systerms I,2002,(04):509-517.
  • 6Lee H J,Kim H B,Joo Y H. A new intelligent digital redesign for T-S fuzzy systems:global approach[J].IEEE Trans on Fuzzy Systerms,2004,(04):274-284.
  • 7Lee H J,Park J B,Joo Y H. Digitalizing a fuzzy obseverbased out put-feedback control:intelligent digital redesign approach[J].IEEE Transactions on Fuzzy Systems,2005,(10):701-716.
  • 8Lee H J,Park J B,Joo Y H. An effecient observer-based sampled-data control:digital redesign approach[J].IEEE Transactions on Circuits and Systems Part I:Fundamental theory and Applications,2003.1595-1601.
  • 9Lee H J,Shieh L S,Kim D W. Digital control of nonlinear systems:optimal linearisation-based digital redesign approach[J].IET Control Theory and Applications,2008,(04):337-351.
  • 10Shieh L S,Gu J F,Sunkel J W. Model conversions of uncertain linear systems using the bilinear and inverse-bilinear approximation method[A].1993.514-517.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部