期刊文献+

监督型稀疏保持投影 被引量:4

Supervised sparsity preserving projections
下载PDF
导出
摘要 稀疏保持投影(SPP)是最近提出的一种无监督降维方法,因此无法利用标号数据提供的监督信息。为此,对SPP进行了扩展,给出了两种监督型稀疏保持投影算法:基于稀疏保持的判别分析(SPP+LDA)和监督稀疏保持投影(S2PP)。前者通过在SPP变换的子空间内进行线性判别分析(LDA)达到利用数据间稀疏重建关系和监督信息的目的;后者借助数据标号直接修正SPP构建的稀疏重建图在SPP中自然地融入监督信息。分析了两种算法的优缺点,在两个常用的人脸数据集(Yale和AR)上验证了两者的可行性及有效性。 Sparsity Preserving Projection(SPP) is a recently proposed unsupervised dimensionality reduction method, thus fails to use the supervised information provided by the labeled data.To address this issue,two supervised algorithms for extending SPP are presented, called SPP-based Linear Discriminant Analysis(SPP+LDA) and supervised SPP(S2PP) respectively. The former takes advantage of sparse reconstructive relationship and label information in data by applying LDA in the SPP transformed subspace, and the latter naturally incorporates discrimination information by utilizing label information to modify sparse reconstructive graph constructed via SPP.The advantages and disadvantages of the two proposed methods are analyzed. The feasibility and effectiveness of the proposed methods are verified on two popular face databases(Yale and AR) with promising results.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第29期186-188,共3页 Computer Engineering and Applications
基金 山东省自然科学基金(No.ZR2010FL011)
关键词 稀疏保持投影 线性判别分析 降维 人脸识别 sparsity preserving projection linear discriminant analysis dimensionality reduction face recognition
  • 相关文献

参考文献15

  • 1边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,2002.
  • 2Yan S,Xu D,Zhang B,et al.Graph embedding and extensions:a general framework for dimensionality reduction[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(1):40-51.
  • 3He X,Ji M,Bao H.Grapb embedding with constraints[C]//Proeeedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI), 2009 : 1065-1070.
  • 4Belkin M, Niyogi ELaplacian eigenmaps and spectral techniques for embedding and clustering[J].Advanees in Neural Information Processing Systems(NIPS),2001,14:585-591.
  • 5Roweis S, Saul L.Nonlinear dimensionality reduction by locally linear ernbedding[J].Scienee,2000,290(5500) :2323-2326.
  • 6He X, Niyogi P.Locality preserving projections[C]//Proe Conf Advances in Neural Information Processing Systems(NIPS),2003.
  • 7He X, Cai D, Yan S, et al.Neighborhood preserving embedding[C]// Proc in International Conference on Computer Vision(ICCV), 2005 : 1208-1213.
  • 8Qiao L, Chen S.Sparsity preserving projections with application to face recognition[J].Pattem Recognition, 2010,43 ( 1 ) : 331-341.
  • 9Friedman J H.Regularized discriminant analysis[J].Joumal of the American Statistical Association, 1989,84:165-175.
  • 10Park C, Park H.A comparision of generalized linear diseriminant analysis algorithms[J].Pattern Recognition, 2008,41 (3) : 1083-1097.

共引文献9

同被引文献65

  • 1孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 2Tenenbaum J, Silva V, Langford V. A global geometric framework for nonlinear dimensionality reduction[J]. Science,2000,290 (5 500):2 319-2 323.
  • 3Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003,15 (6) : 1 373-1 396.
  • 4Yan S, Xu D, Zhang B,et al. Graph Embedding and Extensions:A General Framework for Dimensionality Reduction[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2007,29(1) 40-51.
  • 5Cai D, He X, Han J. Spectral Regression for Dimensionality Reduction[R]. Technical report, Computer Science Department, UIUC, UIUCDCS-R-2007-2856, 2007,5.
  • 6Xue H, Chen S C, Yang Q. Discriminatively regularized least-squares classification[J]. Pattern Recognition, 2009,42(1) :93-104.
  • 7He X, Niyogi P. Locality preserving projections[C]. Proc. Conf. Advances in Neural Information Processing Systems(NIPS), 2003.
  • 8He X, Cai D, Yan S. Neighborhood preserving embedding[C]. Proc. in International Conference on Computer Vision(ICCV), 2005 1 208-1 213.
  • 9Qiao L S, ChenS C. Sparsity Preserving projections with application to face recognition[J]. Pattern Recognition, 2010, 43(1) : 331- 341.
  • 10Qiao L S, Chen S C, Tan X. Sparsity preserving discriminant analysis for single training image face recognition[J]. Pattern Recogni tion Letters, 2010 ,31(5) : 422 429 .

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部