期刊文献+

四元数小波和AdaBoost在人脸识别中的应用 被引量:2

Application of quaternion wavelet and AdaBoost in face recognition
下载PDF
导出
摘要 提出一种基于四元数小波变换(QWT)幅值相位表示及AdaBoost的人脸识别方法。四元数小波变换具有近似的移不变特性,可以同时支持1个幅值和3个相位,其中两个相位编码局部图像移动,而第三个相位蕴含纹理信息。方法对人脸图像进行预处理,进行四元数小波变换并计算四元数幅值和相位特征,将这些幅值和相位组合并应用AdaBoost分类器进行分类,以实现人脸图像的最终识别。对Yale、ORL和FERET三个人脸数据库应用此方法的实验结果表明,该方法在识别率上优于AdaBoost和Gabor+AdaBoost。特别是在FERET数据上精度提高更为明显,而且在计算复杂度上QWT特征提取明显低于Gabor特征提取。 This paper proposes a face recognition method based on the Quatemion Wavelet Transform(QWT) magnitude/ phase representation and AdaBoost.This recent transform is a near shifl-invariant tight frame representation whose coefficients support a magnitude and three phases.The first two QWT phases encode the shifts of image features in the absolute horizon- tai/vertical coordinate system, while the third phase encodes edge orientation mixtures and textural information.The method preprocesses human face images, uses QWT to extract the wavelet coefficients of multi-orientation, and quaternion amplitude and three phases are computed.These quaternion amplitude and phase features are combined and AdaBoost is used to realize recognition.Experimental results on three face databases including Yale, ORL and FERET show that the method has higher recognition rates than AdaBoost and Gabor+AdaBoost.This method has much better recognizing result on FERET especially. Compared with Gabor wavelet features,QWT features are superior both in accuracy and computation complexity.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第29期196-199,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60873121)
关键词 人脸识别 四元数小波变换 幅值相位表示 ADABOOST face recognition quatemion wavelet transform magnitude/phase representation AdaBoost
  • 相关文献

参考文献3

二级参考文献22

  • 1左坤隆,刘文耀.基于活动外观模型的人脸表情分析与识别[J].光电子.激光,2004,15(7):853-857. 被引量:19
  • 2顾华,苏光大,杜成.人脸关键特征点的自动定位[J].光电子.激光,2004,15(8):975-979. 被引量:16
  • 3Lyons M, Akamatsu S, Kamachi M, et al. Coding facial expressions with Gabor wavelets[A]. Third IEEE ConfFace and Gesture Recognition [C] . 1998,200-205.
  • 4Lyons M J, Budynek J, Akamatsu S. Automatic classification of single facial images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 ( 12 ) :1357-1362.
  • 5Zhang Z, Lyons M, Schuster M, et al. Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perceptron[A].Third IEEE Conf Face and Gesture Recognition [C]. 1998,454-459.
  • 6Lee T. Image representation using 2-D Gabor wavelets[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1996,18 (10) : 959-971.
  • 7Paul Viola, Michael Jones. Robust real-time face dete[J].International Journal of Computer Vision, 2004,57 ( 2 ):137-154.
  • 8Piyanuch Silapachote, Deepak Karuppiah, Allen Hanson.Feature selection using adaboost for face expression recognition[A]. The 4 th IASTED International Conference on Visualization, Imaging, and Image Frocessing[C]. 2004,84-89.
  • 9Vapnik V. Statistical Learning Theory[M]. New York:John Wiley & Sons Inc,1998.
  • 10Bourel F,Chibelushi C C, Low A A. Robust facial expression recognition using a state-based model of spatially-localised facial dynamics[A]. Fifth IEEE International Conference on Automatic Face and Gesture Recognition [C] .2002,106-111.

共引文献60

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部