期刊文献+

傅里叶空间变换处理带噪声进化算法的研究

Research on evolutionary algorithm with noisy fitness based on Fourier space transform
下载PDF
导出
摘要 鉴于进化算法处理实际优化问题时受到的噪声干扰,提出了一种新的数学去噪方法(FourierSpaceTransform,FST)。建立噪声环境下进化计算中新的适应函数计算模型;对该模型下计算所得的个体适应值进行傅氏空间变换,运用滤波方法处理;通过傅氏逆变换得到处理后的适应值,通过比较它们模值的大小,选出优秀个体。实验结果表明,FST方法不仅对噪声处理有很好的效果,而且计算代价低,稳定性好。 It is inevitable to meet noisy for Evolutionary Algorithms(EAs) when optimizing the practical problems.This pa- per proposes a new mathematic denoising method(Fourier Space Transform,FST).A new computational model of fitness function in noisy environment is established.The noisy fitnesses of solutions are calculated from the new model and the filtering approach is used to deal with the noisy fitness after Fourier space transform.By the inverse FST, The disposed fitnesses are obtained whose module values are decided whether they are needed excellent solutions.The simulation experiment shows that the FST is not only efficiency but also low computational complexity and high stability.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第28期33-37,共5页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No,61070088) 湖南省自然科学基金项目(No.09JJ6089) 湖南省教育厅项目(No.07C752).
关键词 进化算法 傅里叶空间变换 噪声干扰 滤波方法 evolutionary algorithms Fourier space transform noisy filtering approach
  • 相关文献

参考文献14

  • 1郑金华.多目标遗传算法及其应用[M].北京:科学出版社,2007:61—69.
  • 2Arnold D V, Beyer H G.Efficiency and self-adaptation of the (u/uI,λ) - ES in a noisy environment[M].Heidelberg, Germany: Springer-Verlag, 2000 : 39-48.
  • 3Arnold D V,Beyer H G.Local performance of the (u/u, λ)-ES in a noisy environment[M].San Francisco, CA:Morgan Kaufmann,.2001:127-141.
  • 4Arnold D V,Beyer H G.Local performance of the (1+1)-ES in a noisy environment[J].IEEE Trans Evol Comput,2002,6(1): 30-41.
  • 5Arnold D V, Beyer H G.A comparison of evolution stratcgies with other direct search methods in the presence of noise[J]. Comput Optim, 2003,24 ( 1 ) : 135-159.
  • 6Yang S, Ong Y S, Jin Y.Evolutionary computation in dynamic and uncertain environments[M].Berlin:Springer,2007.
  • 7Luo B ,Zheng J H.A new methodology for searching robust pareto optimal solutions with MOEAs[C]//Proceeding of the 2008 IEEE Congress on Evolutionary Computation(IEEE CEC 2008), Hong Kong, China,2008 : 580-586.
  • 8Aizawa A N, Wah B W.Dynamic control of genetic algorithms in a noisy environment[C]//Proc Conf Genetic Algorithms, 1993: 48-55.
  • 9Aizawa A N, Wah B W.Scheduling of genetic algorithms in a noisy environment[J].Evol Comput, 1994,2(2) : 97-122.
  • 10Fitzpatrick J M, Grefenstette J I.Genetic algorithms in noisy environments[J].Mach Learn, 1988,3 : 101-120.

二级参考文献10

  • 1郭彦.对柯西分布性质的进一步讨论[J].淮阴工学院学报,2005,14(5):8-9. 被引量:5
  • 2Arnold D V,Beyer H-G.A general noise model and its effects on evolution strategy performance[J].IEEE Transactions on Evolutionary Computation, 2006,10(4 ) : 380-391.
  • 3Fitzpatrick J M,Grenfenstette J J.Genetic algorithms in noisy environments[J].Machine Learning:Speical Issue on Genetic Algorithms, 1988(3 ) : 101-120.
  • 4Arnold D V,Beyer H-G.Local performance of the (1+1)-ES in a noisy environment[J].IEEE Trans Evol Comput, 2002,6( 1 ) : 30-41.
  • 5Arnold D V,Beyer H-G.Local performance of the (μ/μ1,λ)-ES in a noisy environment [M].San Francisco, CA: Morgan Kaufmann, 2001 : 127-141.
  • 6Arnold D V,Beyer H-G.Efficiency and self-adaptation of the (μ/μ1,λ)-ES in a noisy environment[M].Heidelberg,Germany:SpringerVerlag, 2000 : 39-48.
  • 7Arnold D V, Beyer H-G.A comparison of evolution strategies with other direct search methods in the presence of noise [J].Comput Optim, 2003,24 ( 1 ) : 135 - 159.
  • 8邱晓华,陈偕雄.非高斯噪声下系统参数M估计及其递推算法[J].科技通报,2007,23(6):867-872. 被引量:1
  • 9孔建新,尹家明.关于铅锌原矿Pb、Zn品位分布状况的研究[J].云南冶金,2007,36(6):54-59. 被引量:1
  • 10王晶,江弘,杨建军.噪声环境下的遗传算法[J].北京化工大学学报(自然科学版),2004,31(1):95-98. 被引量:2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部