期刊文献+

建筑物层次空间聚类方法研究 被引量:4

Hierarchical spatial clustering of buildings
下载PDF
导出
摘要 建筑物空间聚类是实现居民地地图自动综合的有效方法。基于图论和Gestalt原理,发展了一种层次的建筑物聚类方法。该方法可以深层次地挖掘建筑物图形的视觉特性,将面状地物信息充分合理地表达在聚类结果中。依据视觉感知原理,借助Dealaunay三角网构建方法,分析了地图上建筑物的自身形状特性和相互间的邻接关系,并依据建筑物间的可视区域均值距离建立了加权邻近结构图,确定了建筑物的邻近关系(定性约束)。根据Gestalt准则将邻近性、方向性和几何特征等量化为旋转卡壳距离约束和几何相似度约束。通过实例验证了层次聚类方法得到更加符合人类认知的建筑物聚类结果。 Spatial clustering provides an effective approach for generalization of residential area in automated cartographic generalization.Based on graph theory and Gestalt principle, a hierarchical approach is proposed in this paper.This approach can be utilized to discover the graphical structure formed by buildings, which is obtained with the consideration of shape, size and neighboring relations.The neighboring relations are detern3ined by Delaunay triangulation, which is a qualitative constraint among buildings.A weighted neighboring structural graph is obtained by setting visual distance as the weight of the linking edge between adjacent buildings.Two levels of quantitative constraints are developed by considering the Gestalt factors,i.e.proximity, orientation and geometry of buildings.One is the rotating calipers minimum distance;the other is the geometric similarity measure.Through experiments it is illustrated that the results by the hierarchical spatial clustering proposed in this paper are consistent with human perception.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第28期120-123,208,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.40871180) 国家高技术研究发展计划(863)(No.2009AA12Z206)~~
关键词 空间聚类 地图自动综合 Gestalt准则 层次约束 邻近结构图 spatial clustering automated cartographic generalization Gestalt principles hierarchical constraints neighboring structural graph
  • 相关文献

参考文献16

  • 1韩家炜 范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 2Regnauld N.Contextual building typification in automated map generalization[J].Algorithmica, 2001,30: 312-333.
  • 3Regnauld N.Spatial structures to support automatic generalization[C]// International Cartographic Conference(ICC2005), A Coruna, Spain, 2005.
  • 4Yah H W,Weibel R, Yang B S.A multi-parameter approach to automated building grouping and generalization[J].Geoinformatica, 2008,12( 1 ) : 73-89.
  • 5闫浩文,应申,李霖.多因子影响的地图居民地自动聚群与综合研究[J].武汉大学学报(信息科学版),2008,33(1):51-54. 被引量:25
  • 6Ai T H, Zhang X.The aggregation of urban building clusters based on the skeleton partitioning of gap space[C]//Lecture Notes in Geoinformation and Cartography, Part 4,2007:153-170.
  • 7艾廷华,郭仁忠.基于格式塔识别原则挖掘空间分布模式[J].测绘学报,2007,36(3):302-308. 被引量:65
  • 8钱海忠,武芳,朱鲲鹏,王辉连,王家耀.一种基于降维技术的街区综合方法[J].测绘学报,2007,36(1):102-107. 被引量:20
  • 9Anders K H.A hierarchical graph-clustering approach to find groups of objects[C]//ICA Commission on Map Generalization, 5th Workshop on Progress in Automated Map Generalization,2003:28-35.
  • 10郭庆胜,郑春燕,胡华科.基于邻近图的点群层次聚类方法的研究[J].测绘学报,2008,37(2):256-261. 被引量:28

二级参考文献55

共引文献176

同被引文献46

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部