期刊文献+

新的强高斯噪声自适应滤波方法 被引量:6

Novel adaptive de-noising method for strong Gaussian noise
下载PDF
导出
摘要 为有效去除严重的高斯噪声、更好地保护图像细节,提出了一种基于改进脉冲耦合神经网络(PCNN)的自适应去噪方法。根据PCNN神经元的点火捕获特性,定位受强噪声污染的像素,并采用类中值滤波对强噪声点进行滤除;基于无连接脉冲耦合神经网络(PCNNNI)的点火时刻矩阵自适应选择滤波方法平滑弱噪声点。实验结果表明,与传统去噪方法相比,该方法噪声去除效果好,图像细节保持完整,而且系统具有一定的泛化能力。 An adaptive de-noising method is proposed based on improved Pulse Coupled Neural Network(PCNN).Aimed at de-noising the image with serious Gaussian noise effectively,preserving more image details,the method inlroduees a kind of detection mechanism of locating strong noised pixels based on the captures among neurons acting on image filtering, and only filters these pixels using an analogous median filter.It automatically selects the optimal filtering method to smooth the weak noised pixels based on the firing time map of PCNN with null interconnection to enhance the adaptability and de-noising ability of the system.Experimental results prove that the method based on the adaptive PCNN system can remove noise and preserve the details of images more effectively and completely than the conventional methods, and the adaptability is the feature of the system.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第28期154-157,共4页 Computer Engineering and Applications
关键词 脉冲耦合神经网络 高斯噪声 自适应滤波 图像去噪 pulse coupled neural network Gaussian noise adaptive filtering image de-noising
  • 相关文献

参考文献11

二级参考文献51

  • 1ZHANGJunying,LUZhijun,SHILin,DONGJiyang,SHIMeihong.Filtering images contaminated with pep and salt type noise with pulse-coupled neural networks[J].Science in China(Series F),2005,48(3):322-334. 被引量:12
  • 2章毓晋.图像工程(上)--图像处理和分析[M].北京:清华大学出版社,2000.1-46,81-106.
  • 3[4]Sun T, Neuvo Y. Detail-preserving median based filters in image processing. Pattern Recognition Letter,1994, 15:341~347
  • 4[5]Florencio D, Schafer R. Decision-based median filter using local signal statistics. Proc SPIE Int Symp Visual Communications Image Processing, Chicago, Sept. 1994
  • 5[6]Eng How-Lung, Ma Kai-Kuang. Noise Adaptive Soft-Switching Median Filter, IEEE Trans on Image Processing, 2001, 10(2): 242~251
  • 6[7]Eckhorn R, Reiboeck H J, Arndt M, et al. A neural networks for feature linking via synchronous activity:Results from cat visual cortex and from simulations. In: Cotterill R M J, ed. Models of Brain Function,Cambridge: Cambridge Univ Press, 1989
  • 7[8]Eckhorn P. Neural Mechanisms of Scene Segmentation: Recordings from the Visual Cortex Suggest Basic Circuits or Linking Field Models. IEEE Trans Neural Networks, 1999, 10(3): 464~479
  • 8[9]Broussard R P, Rogers S K, Oxley M E, et al. Physiologically Motivated Image Fusion for Object Detection using a Pulse Coupled Neural Network. IEEE Trans Neural Networks, 1999, 10(3): 554~563
  • 9[10]Kinser J M. Foveation by a Pulse-Coupled Neural Net work. IEEE Trans Neural Networks, 1999, 10(3):621~625
  • 10[11]Caufield H J, Kinser J M. Finding the Shortest Path in the Shortest Time Using PCN. IEEE Trans on Neural Networks, 1999, 10(3): 604~606

共引文献108

同被引文献45

  • 1马利刚,马铁华.基于FPGA的实时图像采集系统设计[J].计量与测试技术,2009,36(4):51-52. 被引量:10
  • 2刘彩.一种改进的Sobel图像边缘检测算法[J].贵州工业大学学报(自然科学版),2004,33(5):77-79. 被引量:29
  • 3宗光华,孙明磊,毕树生,于靖军,余志伟.显微视觉自动聚焦研究[J].光学学报,2005,25(9):1225-1232. 被引量:21
  • 4冈萨雷斯[美],数字图象处理[M].2版.阮秋琦,译.北京:电子工业出版社,2007.
  • 5江标初,陈映鹰.基于知识的SAR图像机场目标提取方法[J].计算机工程,2007,33(17):29-30. 被引量:4
  • 6王德胜,康令州.基于FPGA的实时图像采集与预处理[M].器件与应用,2010:32-33.
  • 7ECKHORN R, REITBOECK H J, ARNDTETAL M. Feature linkingvia synchronization among distributed assemblies: simulation of results from cat cortex[J]. Neural Computation, 1990, 2(3): 293-307.
  • 8RANGANATH H S, KONTIMAD G, dOHNSON J L. Pulse-coupled neural network for image processing[A]. In: Proceedings of IEEE Southeastcon[C]. New York: IEEEPress, 1995: 37-43.
  • 9C. Y. Chen, R. C. Hwang ,Y. J. Chen. A passive auto-focus camera control system[J]. Applied Soft Computing, 2010, 10(1): 296-303.
  • 10H. C. Chang, T. M. Shih, N. Z. Chen el al: A microscope system based on bevel-axial method auto-focus[J]. Opt. g- Laser. Eng. , 2009, 47(5): 547-551.

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部