期刊文献+

一种鲁棒的动作分类方法

Robust action classification approach
下载PDF
导出
摘要 针对无动态性的动作识别中易受噪声、干扰和遮挡等影响的问题,提出了一种基于稀疏表示的鲁棒的动作分类方法。对要测试的动作表示成所有训练动作的稀疏线性组合,并扩展该稀疏表示方程使其包含错误项,通过对系数和错误项的l1范数最小化算法来求解其最稀疏的表示,根据所得的稀疏解基于最小剩余量进行分类。并在Weizmann鲁棒性测试序列上进行了评价,实验结果表明该算法对噪声、干扰和部分遮挡具有较好的鲁棒性。 For the problem of the dynamic-free action recognition being susceptible to noise,corruption and occlusion,this paper proposes a robust action classification approach based on a sparse representation.A testing action is treated as a sparse linear combination of all training actions which is extended to contain a error term,and its sparsest representation is comput- ed by minimizing the l1 norm of both coefficients and error.The testing action is classified by minimizing the residual.The experiments are evaluated on the Weizmann robustness test sequences.The results demonstrate that the algorithm developed is robust to noise,corruption and occlusion.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第28期182-184,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.60873192) 江西省教育厅科技项目(No.GJJ09143) 江西师范大学青年基金~~
关键词 动作分类 稀疏表示 l1最小化 压缩传感 action classification sparse representation l1 minimization compressive sensing
  • 相关文献

参考文献9

  • 1Wang L,Suter D.Leaming and matching of dynamic shape manifolds for human action recognition[J].IEEE Transactions on Image Processing(TIP) ,2007,16(6) : 1646-1661.
  • 2Gorelick L,Blank M, Shechtman E,et al.Acfions as space-time shapes[J].IEEE Transactions on Pattern Analysis and Maehine Intelligence ( PAMI ), 2007,29 ( 12 ) : 2247-2253.
  • 3Bregonzio M, Gong S, Xiang T.Recognising action as clouds of space-time interest points[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition(CVPR'09).Miami,Florida, USA: IEEE, 2009:1-8.
  • 4Rao S, Tron R, Vidal R, et al.Motion segmentation via robust subspace separation in the presence of outlying, incomplete, and corrupted trajectories[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition(CVPR' 08).Anchorage,Alaska,USA:IEEE Computer Society,2008.
  • 5Mairal J,Sapiro G,Elad M.Learning multiscale sparse representations for image and video restoration[J].SIAM Multiscale Modeling and Simulation, 2008,7 ( 1 ) : 214-241.
  • 6Mairal J,Bach F.Supervised dictionary leaming[J].Computmg Research Repository, 2008 : 1033-1040.
  • 7Wright J, Yang A, Ganesh A, et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI),2008,31(2) :210-227.
  • 8Donoho D.For most large underdetermined systems of linear equation the minimal ll-norm solution is also the sparsest solution[J].Comm on Pure and Applied Mathematics, 2006, 59 (6) : 797-829.
  • 9Weinland D, Ronfard R, Boyer E.Free viewpoint action recognition using motion history volumes[J].Computer Vision and Image Understanding(CVIU) ,2006,104(2/3) :249-257.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部