期刊文献+

一种结合人工免疫的粒子滤波目标跟踪算法 被引量:5

Particle filter target tracking algorithm combining artificial immune
下载PDF
导出
摘要 针对传统的粒子滤波跟踪算法存在粒子退化的问题,提出了一种结合人工免疫的粒子滤波跟踪算法。该方法利用免疫学原理,将目标模板特征作为抗原,每个粒子对应区域的特征作为抗体,匹配问题转化为抗原和抗体的亲和力问题,通过克隆的方式保留亲和力大的抗体,采用变异的手段去除亲和力小的抗体,从而使结果快速收敛于全局最优解。抗体的多样性有效解决了传统粒子滤波的退化问题。将该方法应用到目标跟踪技术中,仿真结果表明,粒子集的有效样本得到了明显的提高。 For the traditional particle filter tracking algorithm with the problem of particle degeneration,a particle filter tracking algorithm combining artificial immune is presented.The method utilizes the principle of immunology, makes the feature of target template as antigen and the feature of every particle's corresponding area as antibody, transforms the problem of matching into the affinity between antigen and antibody, keeps the antibody with high affinity by the way of clone and gets rid of the antibody by means of variation,thus the result converges at the global optimal solution rapidly.The diversity of antibody solves the degeneration of traditional particle filter effectively.Using the method in target tracking,the simulation's resuits show that the effective sample of particle set is improved apparently.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第28期195-197,222,共4页 Computer Engineering and Applications
关键词 粒子滤波 人工免疫 粒子退化 目标跟踪 有效样本 panicle filter artificial immune algorithm particle degeneration target tracking effective sample
  • 相关文献

参考文献7

  • 1Yilmaz A, Javed O, Shah M.Object tracking a survey[J].ACM Computing Surveys, 2006,38 (4) : 1-45.
  • 2王书朋.视频目标跟踪算法研究[D].西安:西安电子科技大学,2009.
  • 3Comaniciu D,Ramesh V, Meer EKemel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (5) : 564-575.
  • 4李茂军,罗安,童调生.人工免疫算法及其应用研究[J].控制理论与应用,2004,21(2):153-157. 被引量:43
  • 5Czyz J, Ristic B, Macq B.A particle filter for joint detection and tracking of color objects[J].Image and Vision Computing, 2007,25(8) : 1275-1277.
  • 6Nummiaro K,Koller-Meier E,Van Gool L.An adaptive colorbased particle filter[J].Image and Vision Computing, 2003, 21 (1) : 100-101.
  • 7de Castro L N, Von Zuben F J.The clonal selection algorithm with engineering applications[C]//Proceedings of GECCO Work- shop on Artificial Immune Systems and Their Application, Las Vegas, USA, 2000: 36-37.

二级参考文献11

共引文献42

同被引文献41

  • 1吴玲,卢发兴,刘忠.UKF算法及其在目标被动跟踪中的应用[J].系统工程与电子技术,2005,27(1):49-51. 被引量:39
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 4王欢,任明武,杨静宇.一种多特征融合的粒子滤波跟踪新算法[J].计算机工程与应用,2007,43(25):21-24. 被引量:7
  • 5nzweiler M,. Gavrila D. M. Monocular pedestrian detection: Survey and experiments [J]. Journal of IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2179 - 2195.
  • 6Sherrah J., Ristic B.Redding N.J. Particle filter to track multiple people for visual surveillance [J]. IET Computer Vision, 2011, 5(4): 192-200.
  • 7Stepanov, O.A. Kalman filterl.ng: Past and present. An outlook from Russia[J].Gyroscopy and Navigation, 2011, 2(2): 99-110.
  • 8Sherrah J., Ristic B., Redding N.J.. Particle filter to track multiple people for visual surveillance [J]. Gyroscopy and Navigation, 2011, 5(4): 99-200.
  • 9Kun Xu, Lanying Guo. An anti-occlusion object tracking algorithm based on mean shift and particle filter [J]. ICIC Express Letters, Part B: Applications, 2011, 2(1): 95-100.
  • 10Siradjuddin Indah Agustien, Widyanto M. Rahmat, Basaruddin T.. Particle filter with Gaussian weighting for human tracking [J]. Telkomnika, 2012, 10(6): 1453-1457.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部