期刊文献+

Synthesis of ZnO films with a special texture and enhanced field emission properties

Synthesis of ZnO films with a special texture and enhanced field emission properties
下载PDF
导出
摘要 ZnO films with special textures ave fabricated on Mo-coated Al2O3 ceramic substrates by the catalyst-free electron beam evaporation method, and the as-deposited films are treated by hydrogen plasma. It is found that the surface morphologies of the films are changed significantly after hydrogen plasma treatment and that the films consist of vertically standing and intersecting nanosheets. A lower turn-on field of 1.2 V/μm and an enhanced current density -0.11 mA/cm2 at 2.47 V/μm are achieved. The low threshold field and the high emission current density are attributed primarily to the unique shape and smaller resistivity of the ZnO nanosheet films. ZnO films with special textures ave fabricated on Mo-coated Al2O3 ceramic substrates by the catalyst-free electron beam evaporation method, and the as-deposited films are treated by hydrogen plasma. It is found that the surface morphologies of the films are changed significantly after hydrogen plasma treatment and that the films consist of vertically standing and intersecting nanosheets. A lower turn-on field of 1.2 V/μm and an enhanced current density -0.11 mA/cm2 at 2.47 V/μm are achieved. The low threshold field and the high emission current density are attributed primarily to the unique shape and smaller resistivity of the ZnO nanosheet films.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期325-328,共4页 中国物理B(英文版)
基金 supported by the Science Foundation of Shanghai Human Resources and Social Security Bureau, China (Grant No. 2009023)
关键词 nano-ZnO thin films hydrogen plasma treatment field electron emission microwaveplasma chemical vapour deposition nano-ZnO thin films, hydrogen plasma treatment, field electron emission, microwaveplasma chemical vapour deposition
  • 相关文献

参考文献19

  • 1Cong C W, Wei H Y, Zhang P F, Peng W Q, Wu J J, Liu X L, Jiao C M, Hu W G, Zhu Q S and Wang Z G 2005 Appl. Phys. Lett. 87 231903.
  • 2Wang X D, Summers C J and Wang Z L 2004 Nano. Lett. 4 423.
  • 3Jie J S, Wang G Z, Chen Y M, Han X H, Wang Q T, Xu B and Hou J G 2005 Appl. Phys. Lett. 86 031909.
  • 4Kong Y C, Yu D P, Zhang B, Fang W and Feng S Q 2001 Appl. Phys. Lett. 78 407.
  • 5Xu D H, Deng Z B, Xu Y, Xiao J, Liang C J, Pei Z L and Sun C 2005 Phys. Lett. A 346 148.
  • 6Lee C J, Lee T J, Lyu S C, Zhang Y, Ruh H and Lee H J 2002 Appl. Phys. Lett. 81 3648.
  • 7Xu C X and Sun X W 2003 Appl. Phys. Lett. 83 3806.
  • 8Chen Z H, Tang Y B, Liu Y, Yuan G D, Zhang W F, Za- pien J A, Bello I, Zhang W J, Lee C S and Lee S T 2009 J. Appl. Phys. 106 064303.
  • 9Maiti U N, Chattopadhyay K K, Karan S and Mallik B 2010 Scripta Materialia 62 305.
  • 10George A, Kumari P, Soin N, Roy S S and Mc Laughlin J A 2010 Mater. Chem. Phys. 123 634.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部