摘要
The positive thermal gradient is one of the most important parameters during directional solidification. The increase of the thermal gradient usually stabilizes the planar interface in the steady state analysis. However, in the initial transient range of planar instability, the thermal gradient presents complicated effects. Time-dependent analysis shows that the increase of the thermal gradient can enhance both the stabilizing effects and the destabilizing effects on a planar interface. The incubation time first decreases and then increases with the increase of the thermal gradient. Moreover, the initial average wavelength always increases with the thermal gradient increasing, contrary to the effect of the thermal gradient on the steady cellular/dendritic spacing. This reveals the types of spacing adjustment after planar instability.
The positive thermal gradient is one of the most important parameters during directional solidification. The increase of the thermal gradient usually stabilizes the planar interface in the steady state analysis. However, in the initial transient range of planar instability, the thermal gradient presents complicated effects. Time-dependent analysis shows that the increase of the thermal gradient can enhance both the stabilizing effects and the destabilizing effects on a planar interface. The incubation time first decreases and then increases with the increase of the thermal gradient. Moreover, the initial average wavelength always increases with the thermal gradient increasing, contrary to the effect of the thermal gradient on the steady cellular/dendritic spacing. This reveals the types of spacing adjustment after planar instability.
基金
supported by the National Natural Science Foundation of China (Grant No. 51071128)
the Program for New Century Excellent Talents in University (Grant No. NCET-09-0683)
the Fund of State Key Laboratory of Solidification Processing in Northwestern Polytechnical University, China (Grant Nos. 17-TZ-2007, 03-TP-2008, and 24-TZ-2009)
the National Basic Research Program of China (Grant No. 2011CB610401)
the China Postdoctoral Science Foundation (Grant No. 20110491689)