期刊文献+

短期睡眠剥夺对大鼠外侧缰核内氨基酸类神经递质水平及c-Fos表达的影响 被引量:3

Effects of sleep deprivation on amino acids neurotransmitters and c-Fos protein expression in lateral habenular nucleus in rats
下载PDF
导出
摘要 目的:探讨在短期睡眠剥夺(SD)情况下缰核(Hb)神经元活动的改变和Hb对睡眠的调节作用,阐明外侧缰核在SD后睡眠反弹过程中的作用。方法:将24只健康Wistar大鼠随机分为对照组和SD组,每组各12只。采用单个小平台水环境法制作SD模型,大平台组作为压力对照。高效液相-紫外检测器测量Hb内谷氨酸(Glu)和γ-氨基丁酸(GABA)水平,免疫组织化学方法测定c-Fos阳性神经元的数量。结果:与对照组比较,SD大鼠Hb内Glu水平明显增加(P<0.05),GABA水平有增加趋势,外侧缰核c-Fos阳性神经元数量增加(P<0.05),内侧缰核c-Fos阳性神经元数量无明显改变。结论:外侧缰核参与短期SD后的睡眠反弹过程,内侧缰核并没有明显作用。 Objective To investigate the changes of neuronal activity of habenula and the regulatory effect of Hb on sleep under the condition of short-time sleep deprivation(SD),and to clarify the effects of lateral habenula(LHb) on sleep rebound after short-time SD.Methods 24 adult healthy Wistar rats were randomly divided into control group(n=12) and SD group(n=12).The model of SD was set up by small platform surrounded by water.The typical control for this procedure was to maintain the animal on a large platform.The levels of glutamic acid(Glu) and γ-aminobutyric acid(GABA) in Hb neurons were assessed by HPLC-UV detector.The amounts of c-Fos positive neurons were detected by immunohistochemistry.Results Compared with control group,the levels of Glu in Hb was increased(P0.05),and the level of GABA had an incrensing trend.The amount of c-Fos positive neurons was increased markedly in LHb(P0.05),but not in medial Hb(MHb).Conclusion The LHb is related to the sleep rebound after SD,but not the MHb.
出处 《吉林大学学报(医学版)》 CAS CSCD 北大核心 2011年第5期788-791,F0002,共5页 Journal of Jilin University:Medicine Edition
基金 国家自然科学基金资助课题(30970956)
关键词 睡眠剥夺 外侧缰核 内侧缰核 谷氨酸 Γ-氨基丁酸 C-FOS蛋白 sleep deprivation lateral habenula glutamic acid gamma-aminobutyric acid c-Fos protein
  • 相关文献

参考文献13

  • 1McDicken WN, Sutherland GR, Moran CM, et al.Color Doppler velocity imaging of the myocardium [J]. Ultrasound Med Biol, 1992, 18: 651-656.
  • 2Erbel R, Wallbidge DR, Zamorano J, et al. Tissue Doppler Echocardiography[J]. Heart, 1996, 76: 193-196.
  • 3Galiuto L, Ignone G, DeMaria AN. Contraction and relaxation velocities of the normal left ventricle using pulsed-wave tissue Doppler echocardiography [J]. Am J Cardiol, 1998, 81: 609-614.
  • 4Lee RS, Stcffensen SC, Henriksen SJ. Discharge profiles of ventral tegmental area GABA neurons during movemenl, anesthesia, and the sleep-wake cycle[J]. J Neurosci, 2001,21(5): 1757-1766.
  • 5Yamada H, Oki T, Tabara T. Assessment of left ventricular systolic wall motion velocity with pulsed tissue Doppler imaging: comparison with dp/dt of the left ventricular pressure curve [J].J Am Soc Echocardiogr, 1998, 11 (5): 442-445.
  • 6Erbel R, Nesser HJ, Drozdz J. Atlas of tissue Doppler echocardiography-TDE[M]. Steinkopff: Darmstadt, 1995.
  • 7Derumeaux G, Mulder P, Richard V, et al. Tissue Doppler imaging differentiates physiological from pathological pressure-overload left ventricular hypertrophy in rats [J]. Circulation,2002, 105: 1602-1606.
  • 8Yu CM, Lin H, Yang H, et al. Progression of systolic abnormalities in patients with ''isolated'' diastolic heart failure and diastolic dysfunction[J]. Circulation, 2002,105:1195-1122.
  • 9Edvardsen T, Urheim S, Skulstad H, et al. Quantification of left ventricular systolic function by tissue Doppler echocardiography[J]. Circulation, 2002, 105: 2071-2076.
  • 10CorteseBM, Mitchell TR, Galloway MP, et al. Regionspecific alteration in brain glutamate; possible relationship to risktakingbehavior[J]. Physiol Behav, 2010, 99(4):445-450.

共引文献1

同被引文献36

  • 1KOJIMA M, HOSODA H, DATE Y, et al. Ghrelin is a growth- hormone-releasing acylated peptide from stomach EJ]. Nature, 1999, 402(6762) :656-660.
  • 2BRON R, YIN L, RUSSO D, et al. Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat I-J]. J Comp Neurol, 2013, 521(12):2680-2702.
  • 3DASS NB, MUNONYARA M, BASSIL AK, et al. Growth hor- mone secretagogue receptors in rat and human gastrointestinal tract and the effects of ghrelin[J~. Neuroscience, 2003, 120(2) : 443- 453.
  • 4XU L, DEPOORTERE I, TOMASETTO C, et al. Evidence for the presence of motilin, ghrelin, and the motilin and ghre- lin receptor in neurons of the myenteric plexus[-J]. Regul Pept, 2005, 124(1-3) ~119-125.
  • 5RUCHALA M, RAFINSKA L, KOSOWICZ J, et al. The analysis of exogenous ghrelin plasma activity and tissue distribution[J]. Neuro Endocrinol Lett, 2012, 33(2) :191-195.
  • 6FUJINO K, INUI A, ASAKAWA A, et al. Ghrelin induces fasted motor activity of the gastrointestinal tract in conscious fed ratsEJ]. J Physiol, 2003, 550(Pt 1):227-240.
  • 7CHEUNG CK, WU JC. Role of ghrelin in the pathophysiology of gastrointestinal diseaserJ]. Gut Liver, 2013, 7(5) : 505-512.
  • 8FUJIMIYA M, ATAKA K, ASAKAWA A, et al. Ghrelin, des- acyl ghrelin and obestatin on the gastrointestinal motility[J]. Pep- tides, 2011, 32(11):2348-2351.
  • 9MONDAL A, XIE Z, MIYANO Y, et al. Coordination of mo- tilin and ghrelin regulates the migrating motor complex of gas- trointestinal motility in Suncus murinus[-J~. Am J Physiol Gas- trointest Liver Physiol, 2012, 302(10):G1207-G1215.
  • 10RUTER J, KOBELT P, TEBBE JJ, et al. Intraperitoneal in- jection of ghrelin induces Fos expression in the paraventricular nucleus of the hypothalamus in rats[J]. Brain Res, 2003, 991 (1-2) :26-33.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部