期刊文献+

区间值信息系统上决策规则的获取与优化 被引量:2

Decision Rule'S Acquisition and Optimization in Interval-Valued Information System
原文传递
导出
摘要 以区间值信息系统上的变精度相容关系所确定的极大变精度相容类作为的基本知识,在相似水平不变的情形下,提出了极大变精度相容类的属性描述、相对约简、决策规则及相对最优决策规则等概念.最后,针对极大变精度相容类,定义了一种基于区分矩阵的区分函数,并通过计算区分函数的析取范式得到获取区间值信息系统相对最优决策规则的具体操作方法. This paper takes maximal variable precision tolerance classes based on variable precision tolerance relation as basic knowledge in interval-valued information system, and proposes the concepts of descriptions of attribute, relative reduction, decision rule and rel- ative optimal decision rule when similarity level is invariable. At last, we define a kind of discernibility function based on the discernibility matrix for the maximal variable precision tolerance classes, and by computing the disjunction normal form of discernibility function, get approach to obtain relative optimal decision rule of interval-valued information system.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第19期89-96,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(60474022) 四川省教育厅科研基金项目(10ZC058) 西华大学无线电信号智能处理重点实验室基金(XZD0818-09) 四川省网络智能信息处理重点实验室基金(SGXZD1002-10)
关键词 区间值信息系统 相似水平 极大变精度相容类 决策规则 相对约简 interval-valued information system similarity level maximal variable precision tolerance classes: decision rule: relative reduction
  • 相关文献

参考文献13

  • 1Pawlak Z. Rough set [J]. International Journal of Computer and Information Science, 1982, 11: 341-356.
  • 2Pawlak Z. Rough Set: Theoretical Aspects Of Reasoning About Data [M]. Boston: Kluwer Academic Publishers, London, 1991.
  • 3Greco S, Matarazzo B, Slowinski R. Rough sets theory for multicriteria decision analysis [J]. Euro- pean Journal of Operational Research, 2001, 129: 1-47.
  • 4Greco S, Matarazzo B, Slowinski R. Rough approximation by dominance relation, International Journal of Intelligent Systems, 2002, 17: 153-171.
  • 5Kryszkiewicz M. Rough set approach to incomplete information systems[J]. Information Sciences, 1998, 112: 39-49.
  • 6Kryszkiewicz M. Rules in incomplete information systems[J]. Information Sciences, 1999, 113: 271- 292.
  • 7Leung Y, Li D Y. Maximal consistent block technique for rule acquisition in incomplete information systems [J]. Information Sciences, 2003, 153: 85-106.
  • 8Guan Yan-yong, Wang Hong-Kai . Set-valued information systems [J].Information Sciences, 2006, 176: 2507-2525.
  • 9Zhang W X, Mi J S, Wu W Z. Approaches to knowledge reducts in inconsistent systems [J]. Inter- national Journal of Intelligent Systems, 2003, 18: 989-1000.
  • 10Stepaniuk J. Approximation spaces, reducts and representatives[C]//in: Polkowski L, A.Skowron (Eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica-Verlag, Heidelberg, 1998: 109-126.

同被引文献21

  • 1孙士保,秦克云.基于包含度的决策表属性约简算法的研究[J].计算机工程与应用,2006,42(3):19-21. 被引量:6
  • 2孙林,徐久成,马媛媛.基于包含度的不一致决策表约简新方法[J].计算机工程与应用,2007,43(24):166-168. 被引量:4
  • 3徐伟华,张文修.基于优势关系下不协调目标信息系统的分布约简[J].模糊系统与数学,2007,21(4):124-131. 被引量:45
  • 4Pawlak Z, Rough Sets. Theoretical Aspects of Reasoning about Data[M]. Dordrecht, Netherlands: Kluwer Academic Pub lishers, 1991.
  • 5Mi J S, WuW Z, Zhang W X. Approaches to Knowledge Reduction Based on Variable Precision Rough Set Model[J]. Infor- mation Sciences, 2004,159 ; 255 - 272.
  • 6Gau W L, Buehrer D J. Vague sets[J]. IEEE Trans Syst Man Vybern, 1993, 23(2).. 610-614.
  • 7张文修,梁怡,吴伟志.信息系统与知识发现[D].北京:科学出版社,2003:75-80.
  • 8Pawlak Z. Rough Sets. Theoretical Aspects of Reasoning about Data. Dordrecht, Netherlands:Kluwer Academic Publish-ers, 1991.
  • 9Leung Y, Fischer M, Wu weizhi, et al. A Rongh Set Ap-proach for the Discovery of Classification Rules in Interval-valued Information Systems[J]. International Jounal of Approxi-mate Reasoning,. 2008. 47(2):233-246.
  • 10Shao M W, Zhang W X. Dominance Relation and Rules in an Incomplete Ordered Information System. International Jour-nal of Intelligent Systems, 2005(20):13-17.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部