期刊文献+

常数红利下索赔到达时间间距为混合分布的罚金折现期望函数 被引量:1

Expected Discounted Penalty Function for the Claim Inter-Arrival Times Have Mixing Distributions with Constant Dividend Barrier
原文传递
导出
摘要 在常数红利策略下考虑索赔时间间隔为指数分布与Erlang(2)分布混合时的风险模型,在此红利策略下,若保险公司的盈余在红利线以下时不支付红利,否则红利以等于保费率的常速率予以支付.对于此风险模型,推导并求解了罚金折现期望函数所满足的微积分方程,并在索赔量为指数分布时研究了其解的形式. We consider the risk model in the presence of a constant dividend barrier in which the claim inter-arrival times are the mixture of exponential and Erlang(z) distributions. Under such as strategy, no dividends are paid if the insurer's surplus is below the dividend level. Otherwise, dividends are paid at a constant rate that is equal to the premium rate. For this risk model, An integro-differential equation satisfied by the expected discounted penalty function is derived and solved. And, the form of its solution is studied when the claim size is exponentially distributed.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第19期199-205,共7页 Mathematics in Practice and Theory
基金 北京市属高等学校人才强教计划资助项目--中青年骨干人才培养计划资助 北京市教委统计学特色专业建设项目资助
关键词 红利 罚金折现期望 混合分布 LAPLACE变换 dividend expected discounted penalty mixing distribution laplace transform
  • 相关文献

参考文献6

  • 1Lin X S, Willmot G E, Drekic S. The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function[J]. Insurance: Mathematics and Economics, 2003, 33: 551-566.
  • 2Li S, Garrido J. On a class of renewal risk models with a constant dividend barrier[J]. Insurance: Mathematics and Economics, 2004, 35: 691-701.
  • 3Landriault D. Constant dividend barrier in a risk model with interclaim-dependent claim sizes[J]. Insurance: Mathematics and Economics, 2008, 42: 31-38.
  • 4江五元,刘再明.一类索赔到达时间间距为混合分布的平均折现罚函数[J].应用数学学报,2009,32(4):757-765. 被引量:2
  • 5Dickson D C M, Hipp C. On the time to ruin for Erlang(2) risk processes[J]. Insurance: Mathematics and Economics, 2001, 29: 333-344.
  • 6Petrovski I G. Ordinary Differential Equations[M]. N J: Prentice-Hall, 1966.

二级参考文献7

  • 1Gerber H U, Shiu E S W. On the Time Value of Ruin. North Am. Actuar. J, 1998, 2:48-72.
  • 2Dickson D C M, Hipp C. On the of Ruin for Erlang(2) Risk Processes. Insur. Math. Econ,, 2001, 34:333-344.
  • 3Li S, Garrido J. On Ruin for Erlang(n) Risk Process. Insur. Math. Econ., 2004, 34:391 408.
  • 4Cheng Y B, Tang Q H. Moments of the Surplus before Ruin and the Deficit at Ruin in the Erlang (2) Risk Process. North Am. Actuar. J, 2003, 7:1-12.
  • 5Rolski T, Schmidli H, Schmidt V, Teugels J. Stochastic Processes for Insurance and Finance. New York: John Wiley & Sons, 1999.
  • 6Lin X, Willmot G. Analysis of a Defective Renewal Equation Arising in Ruin Theory. Insur. Math. Econ., 1999, 25:63-84.
  • 7Embrechts P, Goldie C M, Veraverbebe N. Subexponentiality and Infinite Divisibility. Probability Theory and Related Fields, 1979, 49:335-347.

共引文献1

同被引文献12

  • 1Dickson D C M, Hipp C. Ruin probabilities for Erlang(2) risk process [ J ]. Insurance : Mathematics and Economics, 1998, 22(3) :251-261.
  • 2Cheng Yebin, Tang Qihe. Moments of the surplus before ru- in and the deficit at ruin in the Erlang(2) risk process[J]. North Am Actuar J, 2003, 7( 1 ) : 1-12.
  • 3Li Shuanming, Garrido J. On ruin for the Erlang (n) risk process[J]. Insurance: Mathematics and Economics, 2001, 34C3) :391-408.
  • 4Reinhard J M. On a class of semi-Markov risk models ob- tained as classical risk models in a Markovian environment [J]. Astin Bulletin, 1984, 14(1) :23-43.
  • 5Cossette H, Landriault D, Marceau 1. Ruin probabilities in the compound Markov binomial model [J ]. Scandinavian Actuarial Journal, 2003, 2003(4):301-323.
  • 6Yuen Kamchuen, Guo Junyi. Some results on the compound Markov binomial models[J]. Scandinavian Actuarial Jour- nal, 2006(3) : 129-140.
  • 7Lin X S, Willmot G E. Analysis of a defective renewal equation arising in ruin theory [J]. Insurance: Mathematics and Economics, 1999, 25 (1) : 63-84.
  • 8刘冬兵.常微分方程初值问题的线性多步法基本公式的研究[D].重庆:重庆大学数理学院,2006.
  • 9刘双杰.基于MATLAB的微分方程组的数值计算[J].科技资讯,2009,7(6):238-238. 被引量:5
  • 10董海玲,侯振挺,张希娜.一类马氏调制风险模型的破产概率(英文)[J].工程数学学报,2009,26(3):381-388. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部