期刊文献+

加权频繁项集挖掘算法在超市商品捆绑销售中的应用

The Application of Weighted Frequent Itemsets Mining Algorithm in Binding Sales of Supermarket
下载PDF
导出
摘要 引入一种新的加权关联规则支持度和置信度的计算方法,并利用矩阵的存储结构提出一种新的加权关联规则挖掘算法,从而改进了加权频繁项集的挖掘效率.该算法在Apriori算法的基础上,对数据库仅需扫描一次,能很快地计算项集的支持度,大大减少了I/O次数,有效提高了加权频繁项集的生成效率.通过应用于超市捆绑销售,证明了该算法能有效地提取商品间的关联信息,有助于商品的销售. Introducing a new calculation of weighted support and confidence,this paper proposes a weighted association rule mining algorithm based on matrix,which can improve the weighted frequent itemsets mining methods.Based on Apriori algorithm,it used matrix's storage structure,which scans the database only once and can quickly calculate the supporting degree of itemsets.Therefore,this algorithm greatly reduces the I / O,and can improve the weighted frequent itemsets generation effectively.By being used in the binding sales of supermarkets,shows that the algorithm can extract the relationship between product information and help the sales of goods effectively.
作者 姜薇 张学芹
出处 《微电子学与计算机》 CSCD 北大核心 2011年第10期142-145,共4页 Microelectronics & Computer
关键词 数据挖掘 加权关联规则 频繁项集 捆绑销售 data mining weighted association rules frequent Items binding sales
  • 相关文献

参考文献4

  • 1于芳,马维忠.关联分析在超市商品捆绑销售中的应用[J].商场现代化,2010(2):33-34. 被引量:2
  • 2Agrawal R,Imielinski T, Wami A S. Mining association rules between sets of items in large databases[C]// Proc of the ACM SIGMOD Conference on Management of Data, Washington: ACM, 1993(05) : 207-216.
  • 3Cai Chun Hing, Fu Ada Waichee, Cheng Chunhung, et al. Mining association rules with weighted items [C]//Proc of International Database Engineering and Applications Symposium. Cardiff, Wales, UK: [s. n], 1998.
  • 4李成军,杨天奇.一种改进的加权关联规则挖掘方法[J].计算机工程,2010,36(7):55-57. 被引量:22

二级参考文献10

  • 1尹群,王丽珍,田启明.一种基于概率的加权关联规则挖掘算法[J].计算机应用,2005,25(4):805-807. 被引量:18
  • 2P. Cabena, P. Hadjinian, Stadler. Discovering data mining: From concept to implementation, 1998 : 44 - 45.
  • 3R. Agrawal, T. Imiclinski, A. Swami. Mining Association Rules between Sets of Items in Large Databases. Proceedings of the 1993 ACM SIGMOD Conference, Washington DC, USA, 1993.
  • 4R. Agrawal, E. Srikant. Fast algorithms for mining association rules. Proc. 1994 Int.Conf. Very Large Databases, 1994:487-499.
  • 5A. ,Savasere, E. Omiednski, and S. Navathe. An efficient algorithm for mining association rules in large databases. Proceedings of the 21st International Conference on Very large Database,1995.
  • 6JS Park, MS Chen, PS Yu. An effective hash-based algorithm for mining association rules. Proceedings of the 1995 ACM SIGMOD international. 1995:175- 186.
  • 7Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules in Large Datebases[C]//Proc. of VLDB'94. Santiago, Chile: [s. n.], 1994.
  • 8Cai Chun Hing, Fu Ada Wai-Chee, Cheng Chun-hung, et al. Mining Association Rules with Weighted Items[C]//Proc. of International Database Engineering and Applications Symposium. Cardiff, Wales, UK: [s. n.], 1998.
  • 9张智军,方颖,许云涛.基于Apriori算法的水平加权关联规则挖掘[J].计算机工程与应用,2003,39(14):197-199. 被引量:30
  • 10张文献,陆建江.加权布尔型关联规则的研究[J].计算机工程,2003,29(9):55-57. 被引量:16

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部