期刊文献+

基于灰色理论的铁路客运量预测影响因素优化 被引量:5

Optimal Selection of Factors Influencing Grey-theory-based Forecast of Railway Passenger Traffic Volume
下载PDF
导出
摘要 为了更好地反映各种相关因素对客运量的影响,实现铁路客运量预测模型中影响因素的优化选择,采用灰色理论对影响因素进行分析,并针对传统灰关联分析在具体应用中存在的关联评价值趋于均匀化、分辨系数取值影响排序结果等不足,提出一种采用动态分辨系数的铁路客运量灰关联分析方法,从而得到各因素对客运量的关联度,实现铁路客运量预测模型中影响因素的优化选择.仿真实验以河南省铁路客运量为例,结果表明预测精度得到了提高,此方法可行并且有效. In order to better unfold the influences of related factors on railway passenger traffic volume to optimize the selection of factors influencing railway passenger traffic forecast modeling,this paper analyzes the influencing factors by the grey theory and introduces a novel grey correlation analysis approach to railway passenger traffic volume with dynamic resolution coefficients,considering the weaknesses of traditional correlation analysis embodied in specific applications such as relation appraisal tending to be equalized and sorting results subject to the impact of discrimination coefficient value.Hence the relations between diverse factors and passenger traffic volume are uncovered,which can help to optimize the selection of factors influencing railway traffic volume forecast modeling.With the railway passenger traffic volume in Henan Province taken for instance,the simulation results testify that the accuracy of forecast has been increased,proving that the approach adopted here is feasible and effective.
出处 《微电子学与计算机》 CSCD 北大核心 2011年第10期164-167,172,共5页 Microelectronics & Computer
基金 河南省教育厅自然科学研究指导计划项目(2009C520010)
关键词 铁路客运量预测 动态分辨系数 影响因素优化选择 灰关联分析 forecast of railway passenger traffic volume dynamic resolution coefficient optimal selection of influencing factors grey correlation analysis
  • 相关文献

参考文献6

二级参考文献25

  • 1王卓,王艳辉,贾利民,李平.改进的BP神经网络在铁路客运量时间序列预测中的应用[J].中国铁道科学,2005,26(2):127-131. 被引量:49
  • 2夏国恩,金炜东,张葛祥.基于支持向量分类机和回归机的综合评价方法[J].西南交通大学学报,2006,41(4):522-527. 被引量:5
  • 3申卯兴.分辨系数对灰色关联系数的影响[J].陕西师范大学学报,1999,27:82-84.
  • 4FAHLMAN S E, LEBIERE C. The Cascade-Correlation Learning Architecture [J]. Advances in Neural Information Processing, 1990 (2) : 524-532.
  • 5GIROSI F, JONES M, POGGIO T. Regularization Theory and Neural Network Architecture [J]. Neural Computation, 1995 (7): 219-269.
  • 6MOZER M C, SMOLENSKY P. Skeletonization.. A Technique for Trimming the Fat from a Network Via Relevance Assessment [C] //Advances in Neural Information Processing Systems. CA: Morgan Kaufmann Publishing House, 1989:107-115.
  • 7GOLUB G H, VAN LOAN C F. Matrix Computations [M]. 2nd ed. Baltimore: The John Hopkins University Press, 1989.
  • 8MORANTZ B H, WHALEN T, ZHANG G P. A Weighted Window Approach to Neural Network Time Series Forecasting [C] //Neural Networks in Business Forecasting. USA: IRM Press, 2004.
  • 9吕锋.灰色系统关联度之分辨系数的研究[J].系统工程理论与实践,1997,17(6):49-54. 被引量:239
  • 10邓聚龙,模糊数学,1985年,2期,1页

共引文献400

同被引文献44

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部