期刊文献+

商品价格数据的两种WEB挖掘算法比较 被引量:3

Compare Two Web Mining Algorithm for Commodity Price
下载PDF
导出
摘要 其他网络商店的商品实时价格是Web商店店主所关注的重要数据,Web数据挖掘使得这一需求变为现实.通过正则表达式算法与分词算法的比较研究,给出了基于正则表达式的商品价格抽取算法和基于分词的网站目录树抽取算法、HTML网页商品抽取算法与商品价格抽取算法.应用系统的实践表明,正则表达式算法的挖全率与正确率较低,而分词算法的挖全率与正确率都达到99%以上,完全满足应用需求,同时可以为商品的市场预测与分析提供依据. Commodities price of others e-supermarkets is the most important data for the shopkeepers of shop online.This requirement becomes actuality because of the Web mining developing very fast.The algorithm based on regular expression and the extract algorithm for directory tree of Website,commodities name on the Webpage and commodities price based on participle are described in detailed respectively.All of them depend on the researched of the regular expression and the participle algorithm.The implementation shows that the lower average full rate and accuracy rate is got from regular expression algorithm.However,the participle algorithm can get more than ninety nine percent of average full rate and accuracy rate.The results show as by this way can touch the shopkeepers minds,and it can support the originality data for the commodities markets and forecast analysis.
出处 《微电子学与计算机》 CSCD 北大核心 2011年第10期168-172,共5页 Microelectronics & Computer
基金 江苏省创新基金(BC2009 208) 淮安市产学研合作计划(HAC201002)
关键词 商品价格 数据挖掘 正则表达式 分词 算法比较 commodity price data mining regular expression participle algorithm compare
  • 相关文献

参考文献10

  • 1Chen Qi, Hou Ming. XML-based data mining design and implementation [C]//International Conference on Computer Design and Applications. Qinhuangdao, China:IEEE, 2010: 610-613.
  • 2Antony S, Wu Ping, Agrawal D. et al. Aggregate skyline: analysis for online users [C]//Ninth Annual International Symposium on Applications and the Internet. Bellevue, Washington, USA:IEEE, 2009: 50-56.
  • 3Alia H, Al-Ghreimil N. A novel efficient classification algorithm for search engines [C]//Computational Intelligence for Modelling Control & Automation. Vienna, Austria. IEEE, 2008 : 773 - 778.
  • 4Atanasova T, Kasheva M, Sulova S, et al. Analysis of the possible application of Data Mining, Text Mining and Web Mining in Business Intelligent Systems [C]// Proceedings of the 33rd International Convention. Opatija, Croatia:IEEE, 2010. 1294 - 1297.
  • 5何波,涂飞,程勇军.Web日志挖掘数据预处理研究[J].微电子学与计算机,2011,28(4):111-114. 被引量:6
  • 6Salin S, Senkul P. Using semantic information for web usage mining based recommendation [C]//International Symposium on Computer and Information Sciences. Northern Cyprus:IEEE, 2009 : 236 - 241.
  • 7张瑞雪,宋明秋,公衍磊.逆序解析DOM树及网页正文信息提取[J].计算机科学,2011,38(4):213-215. 被引量:15
  • 8Xu Cheng Zhong, Ibrahim T I. A keyword-based semantic prefetching approach in Internet news services [J]. Knowledge and Data Engineering, 2004, 16 (5) 601 - 611.
  • 9Grobelnik M, Mladenic D, Fortuna B. Semantic technology for capturing communication inside an organization [J]. Internet Computing, 2009, 13(4): 59-67.
  • 10Litecky C, Aken A, Ahrnad A, et al. Mining for computing jobs [J]. Software, 2010, 27(1): 78-85.

二级参考文献17

共引文献19

同被引文献46

  • 1王琦,唐世渭,杨冬青,王腾蛟.基于DOM的网页主题信息自动提取[J].计算机研究与发展,2004,41(10):1786-1792. 被引量:81
  • 2LEE S H, LIME J S. Forecasting exchange rate by weighted average defuzzification based on NEWFM [C]// 6^th IEEE International Conference on Industrial Informatics. Daejeon: Institute of Electrical and Electronics Engineers Inc. , 2008:1036-1041.
  • 3WANG Hua, LIU Bingxiang, CHENG Xiang, et al. An exchange rate forecasting method based on probabilistic neural network [ C ]// International Conference on Electronic and Mechanical Engineering and Information Technology. Harbin: IEEE Computer Society, 2011 : 3124-3126.
  • 4YANG Hengli, LIN Hanchou. Applying EMD-based neural network to forecast NTD/USD exchange rate [C]// 7^th International Conference on Networked Computing and Advanced Information Management. Daejeon: IEEE Computer Society, 2011:352-357.
  • 5WU Hong, CHEN Fuzhong. Chinese exchange rate forecasting based on the application of grey system DGM( 2, 1 ) model in post-crisis era [C]// 3^th International Conference on Information Management, Innovation Management and Industrial Engineering. Kunming: IEEE Computer Society, 2010 : 592-595.
  • 6HADAVANDI E, GHANBARI A, ABBASIAN N S. Developing a time series model based on particle swarm optimization for gold price forecasting [C]//3^th International Conference on Business Intelligence and Financial Engineering. Hong Kong: IEEE Computer Society, 2010:337-340.
  • 7LIU Fanyong. The hybrid prediction model of CNY/USD exchange rate based on wavelet and support vector re- gression [C]//2^nd International Conference on Advanced Computer Control. Shenyang : IEEE Computer Society, 2010:561-565.
  • 8ZHU Quanyin, YAN Yunyang, DING Jin, et al. The commodities price extracting for shop online [C]// International Conference on Future Information Technology and Management Engineering. Changzhou: IEEE Computer Society, 2010 ( 2 ) : 317-320.
  • 9ZHU Quanyin, YAN Yunyang, DING Jin, et al. The case study for price extracting of mobile phone sell online [C]// IEEE 2nd International Conference on Soft- ware Engineering and Service Science. Beijing: IEEE Computer Society, 2011:281-295.
  • 10ZHU Quanyin, CAO Sunqun, DING Jin, et al. Research on the price forecast without complete data based on Web mining [C]// 10^th International Symposium on Distributed Computing and Applications to Business, Engineering and Science. Wuxi: IEEE Computer Society, 2011 : 120-123.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部