期刊文献+

含裂纹结构的区间B样条小波模糊有限元分析 被引量:1

Fuzzy finite element analysis of B-spline wavelet on the interval of structure with cracks
下载PDF
导出
摘要 为了解决工程问题中材料和载荷的不确定性给含裂纹结构数值分析带来的困难,提高数值计算的精度和效率,将模糊理论与小波有限元相结合,提出了基于区间B样条小波(B-spline wavelet on the interval,BSWI)模糊有限元分析法.该方法将哑节点断裂单元镶嵌到含裂纹结构的小波有限元模型中,建立了含裂纹结构的小波有限元模型,推导了小波有限元模糊平衡方程,并采用λ水平截集及分解定理求解模糊平衡方程;在此基础上,利用虚拟裂纹闭合法计算了不同裂纹长度下应力强度因子隶属函数值,并将计算结果与解析解进行了比较.结果分析表明该方法可用较少单元更为真实、准确地反映结构响应的变化情况,为工程实际中实现含不确定参数的断裂数值分析提供了一种新途径. To overcome the difficults caused by uncertainties of material and load in numerical analysis of structure with cracks and to improve the accuracy and efficiency of numerical calculation,a fuzzy finite element analysis method of B-spline wavelet on the interval(BSWI) is put forward by combing the fuzzy theories with wavelet finite element.Fracture elements of dummy nodes are embedded into the wavelet finite element model with cracks,fuzzy equilibrium equations on the basis of finite element of BSWI are established,and the fuzzy equilibrium equations are solved by using λ level set and decomposition theorem.Subsequently,the membership function values of stress intensity factor with different crack lengths are calculated by using virtual crack closure technique,and the calculated results are compared with analytical solution.The analysis results show that the proposed method can accurately reflect changes in structural response with fewer elements and can be a new way for engineering fracture analysis of complex structures with uncertainties.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2011年第9期134-138,共5页 Journal of Harbin Institute of Technology
基金 高等学校博士学科专项科研基金资助项目(20060183063) 吉林省科学技术厅基金资助项目(20090540) 吉林大学"985工程"资助项目
关键词 区间B样条小波 裂纹 模糊数 应力强度因子 有限元 BSWI crack fuzzy numbers stress intensive factor finite element method
  • 相关文献

参考文献4

二级参考文献57

共引文献185

同被引文献4

  • 1PIAN, CHEN D P. On the suppression of zero ene- rgy deformation modes[J]. Int J Numer Methods Engng, 1973,19(12) : 1741-1752.
  • 2KARDESTUNCERH.有限元法手册[M].诸德超,傅子智,泽.北京:科学出版社,1996.
  • 3TIMOSHENKO S P, GOODIER J N. Theory of Elasticity[M]. 3rd ed. New York : McGraw-Hill Press, 1970.
  • 4谭德坤,孙辉,付雪峰.基于小波有限元的平面问题求解方法[J].河北工程大学学报(自然科学版),2008,25(3):106-109. 被引量:5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部