期刊文献+

均布力偶作用下细长梁力学分析 被引量:1

MECHANICAL ANALYSIS OF UNIFORM SLENDER BEAM ACTED BY UNIFORM COUPLE
原文传递
导出
摘要 通过铁木辛柯梁理论分析了反向均布表面剪应力-等效均匀分布力偶作用下的等截面均质细长梁挠度和应力分布规律,并与有限元法的计算结果对比发现:当边界条件中剪力不为零时,弯曲挠度和正应力分析必须考虑剪力的影响,即Euler梁理论不能满足分析的要求;若存在剪力为零边界时,可使用Euler梁分析弯曲挠度和正应力;剪应力分布和通常规律一样,仍沿高度方向呈抛物线分布,即使对于剪力为零的横截面也可能存在剪应力,这是由于表面剪应力的影响使得梁的上下表面存在剪应力,并且剪应力在横截面内正负可以发生变化. An interested slender beam with constant section and material is established whose above and bottom surfaces are acted by reversed uniform distributed shear stresses. In engineering beam theory these loads are equivalent with uniform distributed couple. Timoshenko beam theory is used to develop the analytical results of the deflection and stress distribution of this model. And in comparison with the numerical results obtained by finite element method, some useful conclusions can be acquired: (1) when shear force is not equal to zero in boundary conditions,the shear effect need to be taken into account for the analyses of bending deflection and normal stress,i, e. Euler beam theory is not competent. (2) when boundary conditions contain zero shear force, Euler beam theory can be used in the analyses of bending deflection and normal stress. (3) The distribution of the shear stress in the cross-section is parabolic with the height coordinate as usual. When shear force is zero, the shear stress may be zero due to the effect of this surface load. The direction of the shear stress in same cross section can be altered.
出处 《固体力学学报》 CAS CSCD 北大核心 2011年第5期534-540,共7页 Chinese Journal of Solid Mechanics
基金 江苏省自然科学基金项目(BK2008370) 南京工业大学科学基金项目资助
关键词 铁木辛柯梁 正应力 剪应力 挠度 Timoshenko beam, normal stress, shear stress, deflection curve
  • 相关文献

参考文献15

  • 1Paolo L. Gatti, Vittorio Ferrari. Applied Structural and Mechanical Vibrations [ M ]. London: E & FN Spon,1999.
  • 2Timoshenko S P, Gere J M. Mechanics of Materials [M]. Now York:Reinhold, 1973.
  • 3武际可.说梁——力学史札记之十九[J].力学与实践,2008,30(6):106-109. 被引量:12
  • 4Timoshenko S P. On the correction for shear of the differential equation for transverse vibration of prismatic bars [J]. Philosophical Magazine, 1921, 41: 744-746.
  • 5Cowper G R. The shear coefficients in Timoshenko's beam theory[J]. Journal of Applied Mechanics, 1966, 33:335-340.
  • 6Romano F. Deflections of Timoshenko beam with varying cross-section[J]. International Journal of Mechanics Science, 1996,38 (8-9) .. 1017-1035.
  • 7Renton J D. A note on the form of the shear coefficient[J]. International Journal of Solids and Structures, 1997,34 (14) : 1681-1685.
  • 8Hutchinson J R. Shear coefficients for timoshenko beam theory[J]. Journal of Applied Mechanics, 2001, 68 (6) :87-92.
  • 9Hutchinson J R. On Timoshenko beams of rectangular cross-section[J]. Journal of Applied Mechanics,2004, 71:359-367.
  • 10Rubin M B. On the quest for the best Timoshenko shear coefficient[J]. Journal of Applied Mechanics, 2003,70 : 154-157.

二级参考文献8

  • 1Todhunter I. A History of the Theory of Elasticity and of the Strength of Materials, from GMilei to the Present. Dover Publications, 1886.
  • 2Mariotte E. Traite du Mouvement Des Eaux et Des Autres Corps Fluides. Oeuvres de Mr.Mariotte Tom.II, 1886.
  • 3Hooke R. Lectures (de Potentia Restitutiva) (Lectures of spriags), 1678.
  • 4亚·沃尔夫.卜六、十七世纪科学、技术和哲学史.北京:商务印书馆,1991.
  • 5Navier M. L'application de la Mechanique a l'etablissement des Constructions et Des Machines, 1826.
  • 6Журавский,Дмитрий Иванович.Омостах раскосной системы Гау, СПБ,1855.
  • 7Timoshenko SP. On the correction for shear of the differential equation for transverse vibration of prismatic bars. Phil Mag, XLI, 1921. 744-746 Reprinted in The Collected Papers of Stephen P. Timoshenko, McGraw Hill, London, 1953. See also [18], 329-331.
  • 8伽利略著.武际可译.关于两门新科学的对话.北京:北京大学出版社,2006

共引文献11

同被引文献11

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部