期刊文献+

核壳结构CdS:Mn/ZnS纳米晶的制备与光学性能研究 被引量:2

Synthesis and optical properties of CdS∶Mn/ZnS core/shell nanocrystals
下载PDF
导出
摘要 以3-巯基丙酸为稳定剂,采用共沉淀法在水相中合成了CdS∶Mn掺杂纳米晶,然后进一步将ZnS包覆于CdS∶Mn纳米晶表面,制备了CdS∶Mn/ZnS核壳结构纳米晶。利用X射线衍射(XRD),透射电子显微镜(TEM)和紫外-可见吸收光谱(UV-Vis)对纳米晶的结构、形貌和光学性质进行了表征,发现制备的纳米晶具有优秀的单分散性,确认合成了CdS∶Mn/ZnS核壳结构纳米晶。通过荧光光谱(PL)研究了纳米晶的发光性质和光稳定性,结果表明包覆壳层后纳米晶的发光强度显著提高,最高可达8倍,且Mn2+离子的发光峰峰位置随着ZnS壳层数的增加而红移。此外,核壳纳米晶的光稳定性大大提高。 With 3-mercaptopropionic acid as stabilizer,CdS∶Mn nanocrystals were synthesized by a co-precipitation technique in aqueous phase,and then CdS∶Mn/ZnS core/shell nanocrystals were prepared by ZnS epitaxial coated on the surface of CdS∶Mn nanocrystals.The crystal structure,morphology and optical property of the nanocrystals were characterized by X-ray diffraction,transmission electron microscopy and UV-Vis absorption spectroscopy.The results showed that nanocrystals were nearly monodisperse and confirmed that ZnS was grown on the surface of CdS∶Mn nanocrystals.Luminescence and photostability of the nanocrystals were researched with photoluminescence emission spectroscopy.Luminescence intensity of the core/shell nanocrystals was significantly enhanced up to eight times,and the Mn2+ photoluminescence peak was gradually red-shifted as the ZnS shell increased.Furthermore,a strongly improved photostability of the optical properties was observed.
出处 《功能材料》 EI CAS CSCD 北大核心 2011年第10期1898-1901,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(50672089) 2008年教育部新世纪人才支持计划资助项目(NCET-08-0511) 山东省优秀中青年科学家奖励基金资助项目(BS2010CL049)
关键词 CdS∶Mn/ZnS 纳米晶 核壳结构 MN掺杂 CdS∶Mn/ZnS nanocrystals core/shell Mn-doped
  • 相关文献

参考文献16

  • 1Alivisatos A P. [J]. J Phys Chem, 1996, 100: 13226- 13239.
  • 2Kilmov V I,Mikhailovsky A A,Xu S, et al. [J]. Science, 2000,290:314-317.
  • 3Vasa P,Singh B P,Ayyub P,et al. [J]. J Phys:Condens Mat, 2005,17 : 189-197.
  • 4Chan W C W,Nie S. [J]. Science,1998,281 :2016-2018.
  • 5David J N,Alexander L E,Steven C E. [J]. Science,2008, 319:1776-1779.
  • 6Suyver J F,Wuister S F,Kelly J J,et al. [J]. Nano let, 2001,1 : 429-433.
  • 7Nag A,Sarma D D. [J]. J Phys Chem C,2007,111:13641- 13644.
  • 8Hauck T S,Anderson R E,Fischer H C,et al. [J]. Small, 2010,6:138-144.
  • 9Peter R, Myriam P, Liang L. [J]. Small, 2009,5 : 154-168.
  • 10Yongan Y, Ou C, Alexander A, et al. [J]. J Am Chem Soc, 2008,130 : 15649-15661.

二级参考文献10

  • 1Wang Y, Tang Z Y, Nicholas A K. [J]. Mater Today,2005, 8(5):20-31.
  • 2Alivisatos P.[J]. Nat Biotech, 2004, 22(8): 47-52.
  • 3Park J, Joo J, Kwon S G, et al. [J]. Angew Chem Int Ed, 2007, 46(25): 4630-4660.
  • 4Peng Z A, Peng X. [J]. J Am Chem Soc, 2001, 123(1): 183-184.
  • 5Klostranec J M, Chan W C W. [J]. Adv Mater, 2006, 18(15) : 1953-1964.
  • 6Derfus A M, Chan W C, Bhatia S N. [J]. Nano Lett, 2004, 4(1): 11-18.
  • 7Yu W W, Peng X. [J]. Angew Chem Int Ed, 2002, 41 (13) : 2368-2371.
  • 8Georgi G, Yordanov a, Adachib E, et al. [J]. Mater Character, 2007, 58(3): 267-270.
  • 9Liao S S, Xu G F, Wang W, et al.[J]. Acta Biomater, 2007, 3(5) : 669-675.
  • 10Wang C L, Zhang H, Zhang J H, et al. [J]. J Colloid Interf Sci, 2006, 294(1):104-108.

共引文献2

同被引文献18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部