期刊文献+

操作性肌电生物反馈疗法对脑卒中患者运动功能恢复的DTI研究 被引量:5

A DTI Study of Effectiveness of Operant-conditioning Electromyography Biofeedback Therapy in Improving Motor Function of Patients with Stroke
下载PDF
导出
摘要 目的:结合核磁共振弥散张量成像(DTI)技术探讨操作性肌电生物反馈疗法改善脑卒中患者运动功能的可能机制。方法:脑卒中患者37例,随机分为康复组19例和对照组18例,均给予常规药物和康复治疗,康复组辅以操作性肌电生物反馈治疗4周。治疗前、治疗4周后采用Fugl-Meyer运动功能评定量表(FMA)进行评估,同时进行DTI检查,测量部分各向异性FA值。结果:康复组FMA评分的提高及FA值的上升均与对照组有显著性差异(P<0.01),且康复组治疗前后的FMA评分变化值与FA值的上升呈正相关(P<0.01)。结论:操作性肌电生物反馈疗法通过反复的定向诱导,更有利于实现大脑结构和功能的重组,促进运动功能恢复。 Objective:To investigate the effects of EMG biofeedback therapy on stroke patients by means of MRI.Methods:Thirty-seven patients with stroke were randomly divided into treatment and control groups.All patients received standard rehabilitation program.The patients in the treatment group have received additional EMG biofeedback treatment along with the conventional rehabilitation intervention.All the patients have been evaluated before the treatment and 4 weeks after the treatment using Fugl-Meyer motor assessment(FMA) for motor function.MR-DTI was used to measure the Fractional Anisotropy(FA) values in the brain white matter fibre bundles.Results:EMG biofeedback therapy treatment significantly improved the FMI scores and FA value relative to those in the control group.The change in FMI scores had a positive correlation with the increase of FA value.Conclusion:Operant-conditioning EMG-BFT contributes to the reorganization of brain structures and function by repeating directional induction
出处 《神经损伤与功能重建》 2011年第5期358-360,共3页 Neural Injury and Functional Reconstruction
关键词 操作性肌电生物反馈治疗 脑卒中 康复机制 磁共振弥散张量成像 operant-conditioning EMG-BFT stroke recovery mechanism DTI
  • 相关文献

参考文献10

  • 1脑卒中的康复医疗[M].北京:中国科学技术出版社,2006:33-34.
  • 2Lourencao MI, Battistella LR, de Brito CM, et al. Effect of biofeedback accompanying occupational therapy and functional electrical stimulation in hemiplegie patients[J].Rehabil Res, 2008,31(1):33 --41.
  • 3Bogaardt HC, Grolman W,Fokkens WJ. The use of biofeedback in the treatment of chron ie dysphagia in stroke patients[J]. Folia Phoniatr Logop, 2009,61 (4) : 200-- 205.
  • 4Jonsdottir J, Cattaneo D, Recalcati M, et al. Task-oriented biofeedback to improve gait in individuals with chronic stroke: motor learning approach[J]. Neurorehabil Neural Repair,2010,24(5) :478--485.
  • 5各类脑血管疾病诊断要点[J].中华神经科杂志,1996,29(6):379-380. 被引量:33022
  • 6周士枋.脑卒中后大脑可塑性研究及康复进展[J].中华物理医学与康复杂志,2002,24(7):437-439. 被引量:140
  • 7刘罡,吴毅,吴军发.脑卒中后大脑可塑性的研究进展[J].中国康复医学杂志,2008,23(1):87-90. 被引量:56
  • 8乐秋海,舒华.弥散张量成像在语言认知神经科学研究中的应用[J].心理科学进展,2010,18(9):1369-1376. 被引量:4
  • 9Shimony JS, McKinstry RC, Akbudak E, et al. Quantitative diffusion tensor anisotropy brain MR imaging: normative human data and anatomic analysis [J]. Radiology, 1999, 212(3) :770--784.
  • 10Jellison BJ, Field AS, Medow J, et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns [J ]. AJNR Am J Neuroradiol,2004, 25(3) :356 369.

二级参考文献100

  • 1缪鸿石.中枢神经系统(CNS)损伤后功能恢复的理论(二)[J].中国康复理论与实践,1996,2(1):1-5. 被引量:59
  • 2Glasser, M., & Rilling, J. (2008). DTI tractography of the human brain's language pathways. Cerebral Cortex, 18(11), 2471-2482.
  • 3Gold, B., Powell, D., Xuan, L., Jiang, Y., & Hardy, P. (2007). Speed of lexieal decision correlates with diffusion anisotropy in left parietal and frontal white matter: evidence from diffusion tensor imaging. Neuropsychologia, 45(11 ), 2439-2446.
  • 4Good, C., Johnsrude, I., Ashbumer, J., Henson, R., Friston, K., & Frackowiak, R. (2001). Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometrie analysis of 465 normal adult human brains. Neuroimage, 14(3), 685-700.
  • 5Greicius, M., Supekar, K., Menon, V., & Dougherty, R. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72-78.
  • 6Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey,C., Wedeen, V., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159.
  • 7Hagmann, P., Cammoun, L., Martuzzi, R., Maeder, P., Clarke, S., Thiran, J., et al. (2006). Hand preference and sex shape the architecture of language networks. Human Brain Mapping, 27(10), 828--835.
  • 8He, Y., Chen, Z., & Evans, A. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 17(10), 2407-2419.
  • 9Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92(1-2), 67-99.
  • 10Klingberg, T., Hedehus, M., Temple, E., Salz, T., Gabrieli, J., Moseley, M., et al. (2000). Microstructure of temporo-parietal white matter as a basis for reading ability evidence from diffusion tensor magnetic resonance imaging. Neuron, 25(2), 493-500.

共引文献33163

同被引文献73

引证文献5

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部