摘要
掌纹识别作为1种新兴的生物识别技术,因其识别区域大、易采集、精度高和可靠性高等优点得到了较快的发展。本文提出基于Gabor小波和支持向量机的掌纹识别算法。算法主要分三个步骤,首先将掌纹图像用5个尺度4个方向的2DGabor滤波器组对图像进行滤波并下采样得到Gabor特征矩阵,之后用二维主成分分析(two-dimen-sional principle component analysis2,DPCA)进行降维,最后将得到的特征向量送进支持向量机(support vector machine,SVM)进行学习分类。实验结果表明,该算法能够很好的解决小样本识别问题,有效的提高掌纹识别率。
As an emerging biometric technology,palmprint recognition technology has been developed quickly because of the advantages of its large recognition region,and easy collection,high precision and reliability.This paper proposes a palmprint identification algorithm based on Gabor wavelet and support vector machine(SVM).Three steps are involved in the algorithm.First,the palmprint image was filtered by a bank of 2DGabor wavelets with five scales and four directions and downsampled to form Gabor feature matrix.Then two-dimensional principle component analysis(2DPCA) was used to extract the features into a lower dimension space.Last,SVM was used to classify the feature vectors.Experimental results showed that this algorithm could solve the small sample recognition problem and improve palmprint recognition rate significantly.
出处
《内蒙古农业大学学报(自然科学版)》
CAS
北大核心
2011年第3期270-275,共6页
Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金
国家自然科学基金资助项目(30960303
61063021)
内蒙古自治区高等学校科学研究项目(NJ10057)