期刊文献+

基于非对称结构与长记忆的股票市场风险测度研究 被引量:1

Study on Dynamic Risk Management in Financial Markets Based on Asymmetry Structure and Long Memory Characters
原文传递
导出
摘要 针对金融市场条件收益存在的"有偏胖尾"分布与非对称波动性特征以及长记忆特征等典型事实特征,运用ARFIMA-FIGARCH-SKST模型等来测度股市动态风险,并通过规范的返回测试检验中的LRT和DQR方法实证考察了测度模型的可靠性。得到了一些非常有价值的实证结果:有无长记忆约束的非对称结构风险模型在中国大陆沪深股市动态风险测度能力上并无实质性差异;ARFIMA-FIAPARCH-SKST模型能够准确测度股市的动态风险;股票市场极端风险的测度尤其不能放弃非对称结构的这一约束条件。 To address skew-fated tail distribution,asymmetry volatility structure,long memory character of financial return series,we apply ARFIMA-FIGARCH-SKST models to measure dynamic risk for financial markets,and test the accuracy of risk measuring models by Likelihood Ratio Test(LRT) and Dynamic Quantile Regression(DQR) method.Some important results are concluded: different risk models show difference for different markets;asymmetry risk model with long memory character don't show essential difference from that without long memory character in Chinese stock markets;ARFIMA-FIAPARCH-SKST model can measure dynamic risks of different markets;asymmetry structure,as a constraint,should not be abandoned in measuring extreme risks of financial markets.
出处 《管理评论》 CSSCI 北大核心 2011年第9期28-37,共10页 Management Review
基金 国家自然科学基金项目(71171025) 教育部人文社科研究项目(10YJCZH086)
关键词 金融市场 非对称结构 长记忆特征 动态风险测度 finance market asymmetry structure long memory character dynamic risk measure
  • 相关文献

参考文献23

  • 1Morgan J. P. Inc. RiskMetrics Technical Document[M]. 4th Edition, New York: Morgan Guaranty Trust Company, 1996.
  • 2Mcneil, Frey. Estimation of Tail-related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach[J]. Journal of Empirical Finance, 2000,7(3):271-300.
  • 3Cont. Empirical Properties of Assets Returns: Stylized Facts and Statistical Issues[J]. Quantitative Finance, 2001,1(2):223-236.
  • 4Fernandez. Risk Management under Extreme Events[J]. International Review of Financial Analysis, 2005,14(2): 113-148.
  • 5魏宇.股票市场的极值风险测度及后验分析研究[J].管理科学学报,2008,11(1):78-88. 被引量:49
  • 6Komunjer, I. Asymmetric Power Distribution: Theory and Applications to Risk Management[R]. Working Paper Series, 2007.
  • 7Bent Jesper Christensen, Morten rregaard Nielsen, Jie Zhu. Long Memory in Stock Market Volatility and the Volatility-in-Mean Effect: The FIEGARCH-M Model[J]. Journal of Empirical Finance, 2010,17(3):460-470.
  • 8Xiao-Ming Li, Lawrence C. Rose. The Tail Risk of Emerging Stock Markets[J]. Emerging Markets Review, 2009,10(4):242-256.
  • 9Bystrom, H. Managing Extreme Risks in Tranquil and Volatile Markets Using Conditional Extreme Value Theory[J]. International Review of Financial Analysis, 2004,14(1):133-152.
  • 10Glosten, L. R., Jagannathan, R., Runkle, D. E. On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks[J]. The Journal of Finance, 1993,48(5):193-209.

二级参考文献55

共引文献170

同被引文献17

  • 1林宇,魏宇,黄登仕.基于EVT的上证A股和B股风险测度效果比较[J].软科学,2007,21(1):40-44. 被引量:5
  • 2Robert F. Engle, Simone Manganelli, 1999, CAViaR: Conditional Autoregressive Value at Riskby Regression Quantiles [R]. UCSD Working Paper.
  • 3Robert F. Engle, 1982, Autoregressive Conditional Heteroskedasticity with Estimate of the Vari-ance of U. K. Inflation [J]. Econometrica, 4 (50), 987-1007.
  • 4Tim Bollerslev, 1986, GeneralizedAutoregressive Conditional Heteroskedasticity [J]. Journal ofEconometrics, 3 (31), 307-327.
  • 5Daniel B. Nelson, 1991, Conditional Heteroskedasticity in Asset Returns : A New Approach [J].Econometrica, 2 (59), 347-370.
  • 6Lawrence R. Glosten, Ravi Jagannathan, David E. Runkle, 1993, On the Relation between the E:r-pected Value and the Volatility of the Nominal Excess Return on Stocks [J]. Journal of Finance, 5 (48), 1779-1801.
  • 7Richard T. Baillie, Tim Bollerslev, Hans Ole Mikkelsen, 1996, Fractionally In:tegrated General-ized Autoregressive Conditional Heteroskedasticity [J]. Journal of Econometrics, 1 (74), 3-30.
  • 8Dongming Zhu, Victoria Zinde-Walsh, 2009, Properties and Estimation of Asymmetric Exponen-tial Power Distribution [J]. Journal of Econometrics, 1 (148), 86-99.
  • 9Zudi Lu, Hai Huang, Richard Gerlach, 2010, Estimating Value at Risk : From J. P. Morgan' sStandard-EWMA to Skewed-EWIVIA Forecasting [R]. OME Working Paper.
  • 10Qian Chen, Richard Gerlach, Zudi Lu, 2010, Bayesian Value-at-Risk and Expected ShortfallForecasting via the Asymmetric' Laplace Distribution [J]. Computational Statistics and Data Analysis, 11 (56), 3498-3516.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部