期刊文献+

非线性及粒子空间效应对交流电渗流泵的影响

Influence of Nolinear and Particle Steric Effect on AC Electroomosis Pumps
下载PDF
导出
摘要 在交流电渗流(ACEO)泵的研究中,一般采用Debye-Huckel(D-H)线性近似法。但该方法只在电压很小时才成立,这和实际情况不符;此外,交流电渗流泵在大电压、高频率下的反向流现象也不能由D-H近似法给出正确的预测。当电压较大时,一般采用非线性的Poisson-Boltzmann(P-B)模型。但是,P-B模型也无法对交流电渗流泵在大电压、高频率下的反向流现象进行预测。在P-B模型中,溶液粒子被当作一个空间点,忽略了粒子间的相互作用以及粒子本身的空间体积效应。实际的粒子都有一定的空间体积,当电压较大、溶液浓度较高时,粒子的空间体积不应被忽略。由于粒子的空间体积,通过引入粒子空间效应对P-B模型进行修正后,给出了交流电渗流泵在较大电压下的数值模型,并对交流电渗流泵在较大电压下的高频率反向流现象进行了成功的预测。 In the study of AC electroomosis (ACEO) pump, the Debye-Huckel (D-H) linear approximation is used commonly. However, this method is valid only when the voltage is very small, and this situation is not identical with the practical situation. In addition, the reverse flow phenomenon of ACEO pumps at the large voltage and high frequency can not be predicted correctly by the D-H linear approximation. The nonlinear Poisson-Boltzmann (P-B) model is adopted at the large voltage generally, but the P-B model also can not predict the reverse flow phe nomenon of ACEO pumps at the large voltage and high frequency. In the P-B model, the solution particle is treated as a spatial point, the interaction among the particles and the steric effect of the particle itself are ignored. In fact, the particles have the finite size, and the finite size of particles should not be ignored at the large voltage and high solution concentration. According to the finite size of particles, the numerical model of ACEO pumps at the larger voltage was given by amending the P-B model with the particle steric effect, and the high frequency reverse flow phenomenon of ACEO pumps at the larger voltage was predicted successfully.
出处 《微纳电子技术》 CAS 北大核心 2011年第10期648-654,共7页 Micronanoelectronic Technology
基金 国家自然科学基金(10872076 50805059)
关键词 交流电渗流泵 非对称电极 等效电路 粒子空间效应 Poisson-Boltzmann(P—B)模型 AC eleetroosmosis (ACEO) pump asymmetric electrode equivalent circuit particle steric effect Poisson-Boltzmann (P-B) model
  • 相关文献

参考文献17

  • 1丛波,王德江,张洪福,赵小刚,潘新良,栾信庸.高位颈段食管癌的外科治疗[J].山东医科大学学报,1997,35(4):336-337. 被引量:2
  • 2姜洪源,杨胡坤,闫辉,RAMOS Antonio.交流电渗微泵理论模型与数值仿真[J].哈尔滨工程大学学报,2007,28(12):1367-1370. 被引量:5
  • 3YANG H K, JIANG H Y, RAMOS A, et al. AC electroki netic pumping on symmetric electrode arrays[J]. Microfluid Nanofluid, 2009, 7 (6): 767-772.
  • 4Laterza E,MosciaroO,UrsoUS, et al. Primary Carcinoma of the hypopharynx and cervical esophagus: evolution of surgical therapy[J]. Hepatogastroenterology,1994,41(3):278
  • 5LOUCAIDES N, RAMOS A, GEORGHIOU G E. Novel sys terns for configurahle AC electroosmotic pumping [J]. Mi crofluid Nanofluid, 2007, 3 (6) :709- 714.
  • 6CERVENKA P, PRIBYL M, SNITA D. Numerical study on AC electroosmosis in microfluidic channels [J]. MicroelectronicEngineering, 2009, 86 (4/5/6): 1333-1336.
  • 7CERVENKA P, HRDLICKA J, PRIBYL M, et al. Compari son of slip and non-slip mathematical models of AC electroosmosis in rnicrochannels with asymmetric co-planar electrbdes [R]. USA: Boston University, 2009.
  • 8HRDLICKA J, CERVENKA P, PRIBYL M, et al. Mathematical modeling of AC electroosmosis in microfluidic and nanofluidic chips using equilibrium and non-equilibrium approaches [J].J Appl Electrochem, 2010, 40 (5) : 967 - 980.
  • 9BAZANT M Z, THORNTON K, AJDARI A. Diffuse charge dynamics in electrochemical systems [J]. Phys Rev: E, 2004, 70 (2): 021506-021529.
  • 10OLESEN L H, BRUUS H, AJDARI A. AC electrokinetic micropumps: the effect of geometri-eal confinement, faradaic current injection and nonlinear surface capacitance [J]. Phys Rev: E, 2006, 73 (5): 056313-056328.

二级参考文献10

  • 1KHANDURINA J, MCKNIGHT T E, JACOBSON S C. Integrated system for rapid PCR based DNA analysis in microfluidic devices [J]. Anal Chem, 2000, 72: 2995- 3000.
  • 2JIANG Linan, JAMES M, KOO J M, et al. Closed-loop electroosmotic microchannel cooling system for VLSI cir-cuits [J]. IEEE Trans Compon Packag Technol, 2002, 25(3) : 347-355.
  • 3JIANG H, YANG H, WANG Y, et al. Research on the microfluidics control method based on the EOF technology [J]. Materials Science Forum, 2006, 532-533:65 -68.
  • 4SHOJI S, ESASHI M. Microflow devices and systems [J]. Journal of Micromechanics and Microengineering, 1994, 4:157-171.
  • 5DEVASENATHIPATHY S, SANTIAGO J G, TAKE-HARA K. Particle tracking techniques for electrokinetic microchannel flows [J]. Analytical Chemistry, 2002,74: 3704-3713.
  • 6RAMOS A, MORGAN H, GREEN N G, et al. AC electrokinetics., a review of forces in rnicroelectrode struc-tures [J]. J Phys D: Appl Phys, 1998, 31: 2338-2353.
  • 7OLESEN L H, BRUUS H, AJDARI A. AC electroki-netic micropumps, the effect of geometrical confinement, faradaic current injection, and nonlinear surface capaci-tance [J]. Physical Review E, 2006, 73:1-16.
  • 8GARCIA-SANCHEZ P, RAMOS A, GREEN N G, et al. Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes [A]. IEEE International Conference on Dielectric Liquids[C]. Coimbra, Portugal, 2005.
  • 9RAMOS A, MORGAN H, GREEN N G, et al. AC electric field induced fluid flow in microelectrodes [J]. Journal of Colloid and Interface Science, 1999, 217:420-422.
  • 10RAMOS A, GONZALEZ A, CASTELLANOS A, et al. Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes [J]. Physical Review E, 2003,67:1-11.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部