摘要
支持向量机(SVM)是在统计学习理论的VC维理论和结构风险最小原理的基础上发展起来的一种新的机器学习方法。本文利用SVM对商品房的几种主要价格因素数据进行统计学习,并且针对SVM学习过程中计算量巨大的问题,提出一种对核函数加权的方式来提高其学习效率,并针对不同因素调整其学习权重,有效提高了模型的学习速度和推广能力。SVM以统计学习理论为基础,具有简洁的数学形式、直观的几何解释和好的泛化能力等优点。研究证明,SVM的预测结果准确,使用方便,是一种优良的商品房价格建模方法。
出处
《中国市场》
2011年第33期57-60,共4页
China Market