期刊文献+

基于ACA-SVM融合的变压器故障诊断

Faults diagnosis of transformer based on fusion of ACA-SVM
下载PDF
导出
摘要 变压器故障诊断是一项复杂而有难度的技术,受到很多因素的影响.本文提出了基于ACA-SVM融合的变压器故障诊断方法,即将蚁群优化算法(ACA)用于SVM参数优化.它不仅具有很强的全局搜索能力,而且容易实现.经实验结果证明,基于ACA-SVM融合的变压器故障诊断结果与实测数据基本一致,其预测精度高于普通的SVM和IEC三比值法,能有效诊断变压器内部潜伏性故障. Affected by many factors,fault diagnosis of transformer is a complex and difficult technology.The proposed ACA-SVM fusion method is applied to fault diagnosis of transformer in the paper,in which the ant colony algorithm(ACA) is used to determine free parameters of support vector machine.The method not only has strong global search capability,but also is very easy to implement.The experimental results indicate that the ACA-SVM method can achieve the nearly same result as the measured data and higher diagnostic accuracy than normal SVM classifier and IEC three ratios.Consequently,it can diagnose the internal latent faults in oil-filled transformer effectively.
出处 《商丘师范学院学报》 CAS 2011年第9期37-42,共6页 Journal of Shangqiu Normal University
基金 安徽省2009-2010自然科学基金立项资助(90416246)
关键词 故障诊断 蚁群算法 支持向量机 电力变压器 参数优化 faults diagnosis ant colony algorithm(ACA) support vector machine(SVM) transformer parameters optimization
  • 相关文献

参考文献5

二级参考文献43

共引文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部