期刊文献+

(2+1)维广义圆柱Kadomtsev-Petviashvilli方程精确解 被引量:4

the Exact Solution of(2+1)-Dimensional Generalized Column Kadomtsev-Petviashvili Equation with Variable Coefficients
下载PDF
导出
摘要 本文用新近提到的(G'/G)展开法首次尝试应用到变系数非线性发展方程中,并且以(2+1)维广义变系数KP方程为例,成功得到了精确解;然后又将该法进行新的改进,再一次对(2+1)维广变系数KP方程求解,获取了更多的解。通过许多算例验证,该展开法易于求解常系数非线性发展方程,而且对变系数非线性发展方程仍很实用、高效,具有广泛的应用前景。 In this paper,using the latest mention(G′/ G)-method first applied to solve variable coefficient equations and takes the(2+1)-dimensional generalized KP equation with variable coeffcients as examples,which obtain the exact solutions successfully.Then to improve this expansion method,the new solution of the(2+1)-dimcnsional generalized KP equation with variable cocfficicnts can be obtained successfully once again.Through many practical example,this expansion method is not only easy to solving often coefficient nonliear evolution equations,and for variable coefficient nonliear evolution equations are vary practical and efficient,and it has a broad prospect of application.
作者 庞晶 靳玲花
出处 《内蒙古工业大学学报(自然科学版)》 2011年第3期168-174,共7页 Journal of Inner Mongolia University of Technology:Natural Science Edition
基金 国家教育部博士点基金资助项目(批准号:20070128001) 内蒙古自然科学基金资助项目(批准号:2010MS0115)
关键词 变系数非线性发展方程 精确解 (G'/G)展开法 (2+1)维广义圆柱KP方程 the nonlinear evolution equations with variable coefficient exact solutions the(G′/ G)-expansion method (2+1)-dimensional generalized Column KP equation.
  • 相关文献

参考文献10

二级参考文献104

共引文献206

同被引文献29

  • 1朱佐农.若干非线性偏微分方程的Painleve性质和Backlund变换[J].东南大学学报(自然科学版),1994,24(2):132-136. 被引量:7
  • 2田贵辰,刘希强.长水波近似方程组的新精确解[J].数学的实践与认识,2005,35(3):105-110. 被引量:10
  • 3留庆.Zakharov系统的雅可比椭圆函数的周期波和孤立波[J].丽水学院学报,2005,27(5):33-37. 被引量:1
  • 4套格图桑,斯仁道尔吉.非线性薛定谔(NLS)方程和变形Boussinesq方程组的精确孤立波解[J].内蒙古师范大学学报(自然科学汉文版),2005,34(4):390-395. 被引量:3
  • 5Bian Chunquan, Pang Jing, et al. New exact solutions of two strong nonlinear evolution equations [J]. Commu- nications in Nonlinear Science and Numerical Simulation, 2010, 15: 2337-2343.
  • 6Pang Jing, Bian Chunquan, Chao Lu. The exact solutions of some nonlinear evolution equations [J]. Journal of Inner Mongolia University, 2010, 41(1): 13-21.
  • 7Li Baoan, Li Xiuyong, Li Xiaoyan, et al. Periodic wave solutions and solitary wave solutions to variant Boussinesqequations[J].河南科技大学学报(自然科学版),2004,2:0091-0094.
  • 8Fan Engui. A series of traveling wave solutions for two variant Boussinesq equations in shallow water waves [J]. Chaos, Solitons and Fractals, 2003, 15: 559-566.
  • 9Wang Xin, Li Yuqi, Chen Yong. Generalized Darboux transformation and localized waves in coupled Hirota equations [J]. Wave Motion, 2014, 51: 1149-1160.
  • 10Wang Xin, Yang Bo, Chen Yong, et al. Higher-order Rogue wave solutions of the Kundu-Eckhaus equation [J]. Phys. Scr., 2014, 89: 095210.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部