期刊文献+

矩阵方程AXB=C的广义中心对称解及其最佳逼近 被引量:1

Generalized central symmetric solution of matrix equation AXB=C and its optimal approximation
下载PDF
导出
摘要 利用矩阵对的广义奇异值分解,给出了矩阵方程AXB=C广义中心对称解的充要条件和通解表达式,证明了在矩阵方程AXB=C的广义中心对称解集合中存在唯一与给定矩阵X*的最佳逼近解,给出了求解最佳逼近解的数值算法和数值例子. By the generalized singular value decompositions of the matrix pair,the necessary and sufficient conditions is established for the existence and the expressions for the generalized central symmetric solution of the matrix equation AXB =C,the result shows that there is an unique optimal approximation solution to a given matrix in Frobenius norm in the generalized central symmetric solution set of matrix equation AXB =C,and numerical algorithms and numerical experiments are presented to compute the unique optimal approximation solution.
出处 《湖南文理学院学报(自然科学版)》 CAS 2011年第3期8-12,共5页 Journal of Hunan University of Arts and Science(Science and Technology)
基金 湖南省教育厅项目(10C0501) 湖南城市学院教改项目(2011)资助
关键词 矩阵方程 广义中心对称解 最佳逼近解 matrix equation generalized central-symmetric solution best approximation solution
  • 相关文献

参考文献5

二级参考文献14

共引文献185

同被引文献7

  • 1彭亚新.求解约束矩阵方程及其最佳逼近的迭代法研究.湖南大学博士学位论文,2006.
  • 2Ya-xin Peng,Xi-yan Hu and Lei Zhang,An iteration method for the symmetric solutions and the optimal appromation solution of the matrix equation AXB C, Applied Mathematics and Computation, 160 (2005) : 763 - 777.
  • 3Guang-xin Huang, F. Yin, K. Guo, An iterative method for the skew- symmetic solution and the optimal approximate solution of the matrix equation AXB = C, J. Comput. Appl. math. , 212 ( 2 ), ( 2008 ) : 231 - 244.
  • 4Yu-yang Qiu, Zhen-yun Zhang, Jun-feng Lu, Matrix iterative solutions to the least squares problem of BXAr = F with some linear constraints,Applied Mathematics and Computation, 185 (2007) : 284 - 300.
  • 5G. H. Golub and W. Kahan, Calculating the singular values and pseudoinverse of a matrix, SIAM J Numer. Anal. ,2 ( 1965 ) : 205 - 224.
  • 6Zhen-yun Peng and Xi-yan Hu, The reflexive and anti- reflexive solution of matrix equation AX = B, Linea Algebra and Its Applications,375 (2003) : 147 - 155.
  • 7Zhen-yun Peng, The inverse eigenvalue problem for hermitian anti-reflexive matrices and its approximation, Apphed Mathematics and Computation, 162 (2005) : 1377 - 1389.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部