期刊文献+

一种用于立体图像匹配的改进稀疏匹配算法 被引量:2

An Improved Sparse Matching Algorithm for Stereo Matching
下载PDF
导出
摘要 立体匹配有着广泛的应用前景,是计算机视觉领域的研究热点。立体匹配是立体视觉中最为关键和困难的一步,它的目标是计算标识匹配像素位置的视差图。文中提出的立体匹配算法基于置信传播(Belief Propagation,BP)。左图像首先经过非均匀采样,得到一个内容自适应的网格近似表示。算法的关键是使用基于置信传播的立体匹配算法,匹配稀疏的左图像和右图像得到稀疏视差图。通过左图像得到网格,稀疏视差图可以经过简单的插值得到稠密视差图。实验结果表明,该方法与现有稀疏立体匹配技术相比在视差图质量上平均有40%的提高。 Stereo matching with a wide range of applications is an important research field in computer vision. Stereo matching is also the key and the most difficult problem in stereo vision, its objective is to calculate the disparity map of identified pixel. The proposed stereo matching algorithm is based on belief propagation (BP). Firstly, a content adaptive mesh is obtained by the non-uniform sampling of the left image. The key issue in the proposed method is to formulate BP, matching the sparse left image and dense right images to get sparse disparity map. We can recover the dense depth map form sparse one due to a simple proposed interpolation method that benefits from the mesh approximation of the left image. The results obtained show that the sparse stereo matching with the existing technology in the quality of depth maps had an average 40% improvement.
出处 《计算机技术与发展》 2011年第10期63-65,69,共4页 Computer Technology and Development
基金 中国民用航空局科研项目(MHRD200924)
关键词 立体匹配 置信传播 图像重建 stereo vision belief propagation image reconstruction
  • 相关文献

参考文献14

二级参考文献55

共引文献163

同被引文献19

  • 1侯春萍.平面图像立体化技术的研究[D].天津:天津大学电子信息工程学院,1998.
  • 2梁发云,邓善熙,杨永跃.裸眼立体显示器效果评定方法研究[J].中国图象图形学报,2007,12(8):1407-1411. 被引量:10
  • 3N A Dodgson.Time-Sequential Multiprojector Autostereo- scopic 3D Display[J].Soc. Information Display,2000,11(8): 169-176.
  • 4大石严,烟田丰彦,田村彻[日].显示技术基础[M].白玉林,王毓仁,译北京:科学出版社,2003.
  • 5Woodgate G J, Ezra D,Harrold J, et al.Autostereoscopic 3D display systems with observer tracking[J]. Signal Processing: Image Communication, 1998,14:131 - 145.
  • 6Huang Wan-Jian, Tsai Chao-Hsu, Wang Nai-Yueh,et al.The fabrication of a novel projection screen for autostereoscopic display systems[A]. Proc SPIE(Vo15291)[C]. 2004:285-292.
  • 7Julesz B. Binocular depth perception of computer generated pattens[J]. Bell System Technical Joumal,1960,39(5):1125- 1162.
  • 8Hartley R. Multiple View Geometry in Computer Vision[M]. 2nd ecLEngland: Cambridge University Press,2003.
  • 9Winkler S. Digital Video Quality Vision Models and Metrics[M]. Switzerland:John Wiley & Sons Ltd,2005.
  • 10庄天戈,赵俊,钱晓平.生物医学图像处理[M].上海:上海交通大学,2007,6:110.130.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部