期刊文献+

基于蚁群算法的协同过滤推荐系统的研究 被引量:14

Research of Collaboration Filtering Recommendation System Based on Ant Algorithm
下载PDF
导出
摘要 协同过滤算法是根据基本用户的观点产生对目标用户的推荐列表,现模拟蚂蚁觅食的原理,将用户视为具有不同属性的蚂蚁,聚类中心视为蚂蚁所要寻找的"食物源",提出基于蚁群算法实现用户聚类,以提高协同过滤推荐系统的最近邻查询速度,降低搜索开销,同时避免了使用K-Means聚类方法受初始聚类中心和聚类个数的影响。最终实验验证蚁群算法实现用户聚类的有效性,且解决了新用户得不到推荐的问题,并提高了协同过滤推荐算法的精确度。 Collaboration filtering recommendation algorithm is that generate the recommendation list according to basic user' view. Now imitated ant foraging theory, the users are regarded as different attributes ants, clustering center is regarded as the "food source" that the ants are looking for, proposed to cluster user based ant algorithm, for improving the query speed of the nearest neighbor in the collabora- tive filtering recommendation system, reducing the search spending, and avoiding the effects of initial clustering centers and clustering numbers in the use of K-Means clustering method. Finally, the experiment verify that user clustering through ant algorithm is effective, and solve the problem of new user not recommended, enhance the precision of collaboration filtering recommendation algorithm.
出处 《计算机技术与发展》 2011年第10期73-76,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(70871081) 上海市重点学科建设资助项目(S30504)
关键词 蚁群算法 聚类 协同过滤 推荐 用户 ant algorithm clustering collaboration filtering recommendation user
  • 相关文献

参考文献12

  • 1Breese J, Hecherman D, Kadie C. Empirical analysis of pre- dictive algorithms for collaborative filtering[ C ]//In: Proceed- ings of the 14th Conference on Uncertainty in Artificial Intelli- gence ( UAI' 98 ). [ s. l. ] : [ s. n. ], 1998:43-52.
  • 2Lee J S,Jun C H,Lee J,et al. Classification-based collabora- tive filtering using market basket data [ J ]. Expert System with Applications,2005,29 (3) :700-704.
  • 3Adomavicius G, Tuzhilin A. Toward the next generation of rec- ommender systems:a survey of the state-of-the-art and pos sible extensions EJ]. IEEE Trans on Knowledge and Data Engineering,2005,17(6) :734-749.
  • 4李涛,王建东,叶飞跃,冯新宇,张有东.一种基于用户聚类的协同过滤推荐算法[J].系统工程与电子技术,2007,29(7):1178-1182. 被引量:70
  • 5黄国言,李有超,高建培,常旭亮.基于项目属性的用户聚类协同过滤推荐算法[J].计算机工程与设计,2010,31(5):1038-1041. 被引量:28
  • 6Deneubourg J L, Goss S, Franks N, et al. The dynamics of col- lective sorting:Robot-like ants and ant-like robots[ C ]//Pro- ceedings of the First international Conference on Simulation of Adaptive haviour: From Animals to Animals J. Cambridge, MA:MIT Press,1991:356-365.
  • 7杨燕,张昭涛.基于阈值和蚁群算法结合的聚类方法[J].西南交通大学学报,2006,41(6):719-722. 被引量:11
  • 8马良,朱刚,宁爱兵.蚁群优化算法[M].北京:科学出版社,2008,2.
  • 9Aggarwal C C. On the effects of dimensionality reduction on high dimensional similarity search [ C ]//Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART. Symposium on Prin- ciples of Datable Systems. [s. l. ] :[s. n. ] ,2001 :256-266.
  • 10王明文,陶红亮,熊小勇.双向聚类迭代的协同过滤推荐算法[J].中文信息学报,2008,22(4):61-65. 被引量:16

二级参考文献52

  • 1杨燕,靳蕃,Mohamed Kamel.一种基于蚁群算法的聚类组合方法[J].铁道学报,2004,26(4):64-69. 被引量:39
  • 2邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 3张惟皎,刘春煌,尹晓峰.蚁群算法在数据挖掘中的应用研究[J].计算机工程与应用,2004,40(28):171-173. 被引量:34
  • 4张建华,江贺,张宪超.蚁群聚类算法综述[J].计算机工程与应用,2006,42(16):171-174. 被引量:41
  • 5王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐[J].计算机应用,2007,27(5):1225-1227. 被引量:43
  • 6Lee J S,Jun C H,Lee J,et al.Classification-based collaborative filtering using market basket data [J]. Expert System with Applications,2005,29(3 ):700-704.
  • 7Velasquez Juan D,Palade Vasile.Building a knowledge base for implementing a web based computerized recommendation system [J]. International Journal on Artificial Intelligence Tools, 2007,16(5):793-828.
  • 8Makoto Iguchi,Shigeki Goto.Anonymous P2P web browse history sharing for web page recommendation[J].IEICE Trans Inf& Syst,2007,E90-D(9): 1343-1353.
  • 9Segrera Saddys,Moreno Maria.Application of multiclassifiers in web mining for a recommender system[J]. Maria N. WSEAS Transactions on Information Science and Applications, 2006,3 (12):2471-2476.
  • 10Adomavicius G, Tuzhilin A.Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J].IEEE Trans on Knowledge and Data Engineering, 2005,17(6):734-749.

共引文献219

同被引文献130

引证文献14

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部