期刊文献+

基于时间间隔和点击量的Prefixspan改进算法

An Improved Prefixspan Algorithm Based on Time Interval and Click Quantity
下载PDF
导出
摘要 数据挖掘算法过程中对客户行为的实时性是分析客户网络消费行为的重要要素之一,但是Prefixspan数据挖掘算法挖掘过程中并未对此问题予以考虑,因此,在时间间隔序列模式概念的基础上,提出了一种基于时间间隔和点击量的Prefixspan改进算法。在该算法中,引入了频繁度和时间属性的概念,并加入了时间间隔和点击量等要素,从而使挖掘到的信息具有实时性的特点,并且提高了对挖掘对象的侧重性。通过实验验证,与原来的Prefixspan算法相比较后表明,改进算法用于具有时间特性的数据集时获得的挖掘结果更精确,挖掘效率得到了有效的提高。 The real-time character of customer behavior is one of the main factors for analyzing customer's internet consumption behavior. But it was ignored in the data mining algorithm of Prefixspan, so based on the concept of time interval sequence pattern, an improved algorithm integrated with time interval and click quantity was presented. In this algorithm,the concept of the frequent degree and time attribute was imported and the factors of time interval and click quantity was added, which made the mined dates had the real-time charac- ter, and improved the emphasis on sex of the mining object. The experiment shown that compared with the original algorithm, the improved algorithm was more precise,when used to mine the data set with real-time character,at the same time the mining efficiency has been improved effectively.
出处 《计算机技术与发展》 2011年第10期81-84,共4页 Computer Technology and Development
基金 山西省自然科学基金资助项目(2009011022-1)
关键词 时间间隔 点击率 序列模式 数据挖掘 time interval click quantity sequence patterns data mining
  • 相关文献

参考文献12

二级参考文献51

  • 1钱昱,郑诚.基于序列模式的异常检测[J].微机发展,2004,14(9):53-55. 被引量:3
  • 2宋世杰,胡华平,周嘉伟,金士尧.基于序列模式挖掘的误用入侵检测系统框架研究[J].计算机工程与科学,2006,28(2):28-30. 被引量:5
  • 3胡吉明,鲜学丰.挖掘关联规则中Apriori算法的研究与改进[J].计算机技术与发展,2006,16(4):99-101. 被引量:59
  • 4吴志丹,赵大宇,唐恒永.一种改进的关联规则挖掘算法[J].沈阳师范大学学报(自然科学版),2006,24(3):257-259. 被引量:4
  • 5李川川,刘衍珩,田大新.基于序列模式的网络入侵检测系统[J].吉林大学学报(工学版),2007,37(1):121-125. 被引量:7
  • 6Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[ C]//Proceedings of the ACM SIGMOD Conference on Management of data(ACM SIGMOD'93). Washington, USA: [ s. n. ], 1993 : 207 - 216.
  • 7Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules in Large Database[ C]//Proceeding of the 20th International Conference on Very Large Databases. Santiago, Chile: [s. n. ], 1994:487 - 499.
  • 8Cheung D W, Han J, Ng V, et al. A fast distributed Algorithm for mining association rules[C]//In: Proc 1996 Int Corrf Parallel and Distributed Information Systems. Miami Beach, FL: [s.n. ] ,1996:31-44.
  • 9Agrawal R, Srikant R. Mining Sequential Pattems[C]//Proc. of the 11th Int'l Conf. on Data Engineering. Taipei, China: [s. n.], 1995: 3-L4.
  • 10Srikant R, Agrawal R. Mining Sequential Patterns: Generalizations and Performance Improvements[C]//Proc. of the 5th Int'l Conf. on Extending Database Technology. Avignon, France: [s. n.], 1996: 3-17.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部