期刊文献+

欧拉方程的高阶间断Galerkin方法研究

High-order discontinuous Galerkin method for solving Euler equations
下载PDF
导出
摘要 在二维结构网格上建立了一种求解欧拉方程的快速稳健高阶间断Galerkin方法.采用Roe迎风型数值通量,时间步采用TVD Runge-Kutta方法推进;构造了适合间断Galerkin方法的二维二阶Moment限制器,并采用当地时间步长加速收敛.数值模拟了绕NACA0012翼型流场,数值结果表明了Moment限制器有效地抑制了数值振荡,该方法具有优良的加速收敛效果和较好地激波捕捉能力. A fast and robust high-order discontinuous Galerkin algorithm using normal orthogonal basis functions is presented for the solution of compressible Euler equations on structured grids.The methodology is developed using both Roe upwind flux and TVD Runge-Kutta multiple method in temporal step.Moreover,this paper investigates 2D two-order Moment limiter and uses local time step technique to accelerate the convergence to a steady-state solution.The calculation results are presented for a flow over the NACA0012 airfoil,and show that the algorithm has good convergence and excellent ability to capture shocks,and Moment limiter can effectively suppress the numerical oscillations.
作者 马欣荣
出处 《西南民族大学学报(自然科学版)》 CAS 2011年第5期691-695,共5页 Journal of Southwest Minzu University(Natural Science Edition)
基金 国家自然科学基金项目(11002117) 咸阳师范学院科研基金项目(09XSYK204 09XSYK209)
关键词 间断GALERKIN方法 Roe迎风型数值通量 TVDRunge-Kutta方法 Moment限制器 discontinuous Galerkin method Roe upwind flux TVD Runge-Kutta method Moment limiter
  • 相关文献

参考文献11

  • 1REED W H, HILL T R. Triangular mesh methods for the neutron transport equation[R]. Los Alamos Scientific Laboratory, Report LA-UR-73-479, 1973.
  • 2COCKBURN B, LIN S Y, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems[J]. Computational Physics, 1989, 84:90 -113.
  • 3SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. Computational Physics, 1988, 77: 439-471.
  • 4COCKBURN B, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II general framework[J]. Mathematics of Computation, 1989, 52:411-435.
  • 5COCKBURN B, HOU SHU S, C W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case[J]. Mathematics of Computation, 1990, 54: 545-581.
  • 6COCKBURN B, SHU C W. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems[J]. Computational Physics, 1998, 141: 199-224.
  • 7QIU J, SHU C-W. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one dimensional case [J]. J Comp Phys, 2004, 193:115-135.
  • 8QIU J, SHU C W. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional cases [J]. Computers & Fluids, 2005, 34: 642-663.
  • 9蔚喜军,周铁.流体力学方程的间断有限元方法[J].计算物理,2005,22(2):108-116. 被引量:25
  • 10贺立新,张来平,张涵信.任意单元间断Galerkin有限元计算方法研究[J].空气动力学学报,2007,25(2):157-162. 被引量:15

二级参考文献29

  • 1Marinak M M, Haan S W, Tipton R E, Weber S V, Remington B A. Three-dimensional simulations of ablative hydrodynamic instabilities in indirectly driven targets [R]. UCRL-LR-105821-95-3, 168- 178.
  • 2Kershaw D S, Prasad M K, Shaw M J. Three-dimensional, Unstructured-mesh Eulerian hydrodynamics with the upwind, discontinuous finite element method [Z]. Preprint, 160 - 168.
  • 3Zhou Tie, Li Yinfan, Shu Chi-wang. Nmnerical comparison of WENO finite volume and Runge-Kutta Galerkin methods [J]. J Sci Computing, 2001, 16:145 - 171.
  • 4Reed N H, Hill T R. Triangle mesh methods for the Neutron transport equation [R]. Los Alamos Scientific Laboratory, Report LAUR-73-479, 1973.
  • 5Cockburn B, Shu C W. The Runge-Kutta local projection P1-discontinuous Galerkin method for scalar conservation law [J]. M2AN 1991,337: 337 - 361.
  • 6Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅱ:general framework [J]. Math Comp, 1989, 52: 411- 435.
  • 7Cockburn B, Lin S Y. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ: onedimensional systems [J]. J Comp Phys, 1989, 84: 90- 113.
  • 8Cockburn B, Hou S C, Shu C W. TVB Runge-Kutta discontinuous Galerkin method for conservation laws Ⅳ: the multidimensional case [J]. J Comp Phys, 1990, 54:545 - 581.
  • 9Cockburn B, SHu C W. TVB Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems [J]. J Comp Phys, 1998, 144: 199-224.
  • 10Bassi F, Rebay S. High-order accurate discontinuous finite element solution of the 2D Euler equation [J]. J Compnt Phys, 1997,138:251 - 285.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部