期刊文献+

基于Timoshenko与高阶剪切变形梁理论的RC梁极限承载力分析

Ultimate Bearing Capacities of RC Beam Based on Timoshenko and Higher-order Shear Deformation Beam Theories
下载PDF
导出
摘要 分别应用Timoshenko和高阶剪切变形梁理论,推导出能够考虑剪切变形的钢筋混凝土梁柱截面非线性分析模型,并提出应用横向正应变和剪应变的关系系数来计算混凝土开裂后的截面高度变形,采用基于修正斜压场理论的Stevens等的本构模型以避免混凝土的裂缝验算;数值模拟了正截面破坏以及集中荷载作用下有腹筋和无腹筋RC梁的极限承载力。结果表明:按2种理论计算的结果与试验数据吻合良好;基于Timoshenko梁理论的分析模型的结果更接近试验数据,收敛性也更好。 Based on Timoshenko and higher order shear deformation beam theories respectively, a nonlinear analysis model with shear deformation considered reinforced concrete (RC) frame element was deduced. To take into account the height deformation of the given member after diagonal cracking, a correlation between transverse normal strain and shear strain was proposed. The constitutive model proposed by Stevens, et al was adopted to eliminate the cracks checking of concrete, which was mostly based on modified compression field theory. Simulations about pure bending tests and concentrated loading tests with and without stirrups were made to validate the ultimate bearing capacity of RC beam. The results show that the calculation results based on the two theories are both in good agreement with experimental data. Comparatively, it is better to use the section analysis model based on Timoshenko beam theory to increase accuracy and computational efficiency, and the convergence is better.
出处 《建筑科学与工程学报》 CAS 2011年第3期67-73,共7页 Journal of Architecture and Civil Engineering
基金 国家自然科学基金项目(50978010) 亚热带建筑科学国家重点实验室开放基金项目(2010KB04)
关键词 钢筋混凝土 TIMOSHENKO梁理论 高阶剪切变形梁理论 极限承载力 非线性分析 reinforced concrete Timoshenko beam theory high-order shear deformation beam theory ultimate bearing capacity nonlinear analysis
  • 相关文献

参考文献16

  • 1YE Ying-hua, DIAO Bo. Nonlinear Analysis of Concrete Structures [M]. Harbin.. Harbin Institute of Technology Publishing House, 1996.
  • 2TIMOSHENKO S P. On the Correction for Shear of the Differential Equation for Transverse Vibration of Prismatic Bars[J]. Philosophical Magazine, 1921,41 :744- 746.
  • 3BICKFORD W B. A Consistent Higher Order Beam Theory[J]. Developments in Theoretical and Applied Mechanics, 1982,11: 137- 150.
  • 4GREGORI J N. SOSA P M, FERNANDEI PMA, et al. A 3D Numerical Model for Reinforced and Prestressed Concrete Elements Subjected to Combined Axial, Bending, Shear and Torsion Loading [J]. Engineering Structures, 2007,29 ( 12 ) :3404-3419.
  • 5VECCHIO F J, COLIJINS M P. The Modified Com pression-field Theory for Reinforced Concrete Elem ents Subjected to Shear[J]. ACI Journal Proceedings 1986,83(2) :219-231.
  • 6REDDY J N. A Simple Higher Order Theory for Laminated Composite Plates[J]. Journal of Applied Mechanics,1984,51(4) :745 752.
  • 7ZHANG Y P,DIAO B,YE Y H,et al. Nonlinear RC Beam Element Model Under Combined Action of Axial Compression,Bending and Shear[C]//TIZANI W. Proceedings of the International Conference on Computing in Civil and Building Engineering. Nottingham: Nottingham University Press, 2010 : 471-472.
  • 8DIAO B, ZHANG Y P, YE Y H. Ultimate Load Analysis of RC Beam Under Combined Action of Axial,Bending and Shear Loading[J].Advanced Materials Research, 2011, 163, 164, 165, 166, 167: 1702- 1707.
  • 9STEVENS N J, UZUMERI S M, COIJI.INS M P, et al. Constitutive Model for Reinforced Concrete Finite Element Analysis[J]. ACI Structural Journal, 1991,88(1)..49 59.
  • 10薛延胜.钢筋混凝土套叠梁正截面承载力试验[D].哈尔滨:哈尔滨建筑工程学院,1985.

二级参考文献29

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部