期刊文献+

基于Adaboost算法和人脸特征三角形的姿态参数估计 被引量:7

Pose Parameters Estimate Based on Adaboost Algorithm and Facial Feature Triangle
原文传递
导出
摘要 提出了一种基于Adaboost算法和人脸特征三角形的姿态参数估计方法。首先利用Adaboost算法训练人脸器官检测器,然后根据人脸器官的几何特征定位人脸特征点,利用获得的人脸特征点构建人脸特征三角形。当人脸发生姿态变化时,利用特征三角形的位置变化进行姿态参数的初步估计。 Pose is one of the most important elements that affect the facial image.Pose is also an important parameter in the algorithm of face analysis.The pose parameters estimate algorithm based on Adaboost and face feature triangle is introduced in the thesis.Firstly,we use adaboost algorithm to train facial feature detector,then get feature points according to facial geometric structure.After that,we can use feature points to construct facial feature triangle.When facial pose varies,the parameters could be estimated according to the position of facial feature triangle.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2011年第10期1164-1167,1186,共5页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(60975025) 国家教育部博士点专项基金资助项目(20090131120039) 中国博士后科学基金特别资助项目(200902563) 中国博士后科学基金面上资助项目(20080441123) 机器人技术与系统国家重点实验室开放研究基金资助项目(SKLRS-2010-MS13)
关键词 人脸姿态 ADABOOST 人脸特征 特征三角形 姿态参数估计 facial pose Adaboost facial feature feature triangle pose estimation
  • 相关文献

参考文献12

  • 1赵松,潘可,张培仁.典型相关分析在人脸姿态估计中的应用[J].小型微型计算机系统,2009,30(5):983-987. 被引量:6
  • 2唐亮,熊蓉,刘勇.主元分析变换空间上的鉴别共同矢量人脸识别方法[J].武汉大学学报(信息科学版),2009,34(4):404-408. 被引量:5
  • 3Brunelli R. Estimation of Pose and Illuminant Direction for Face Proeessing[J].Image and Vision Computing, 1997, 15(3): 741-748.
  • 4Lis Z. Learning Multi-view Face Subspaces and Facial Pose Estimation Using Independent Component analysis[J]. IEEE Trans Image Process, 2005, 14 (6) : 705-712.
  • 5Mazumda D R, Dutta S, Mitra S. Automatic Feature Detection of a Face and Recovery of Its Pose [J].Communicated to Journal of IETE, 2009: 505- 511.
  • 6胡步发,邱丽梅.基于多点模型的3D人脸姿态估计方法[J].中国图象图形学报,2008,13(7):1353-1358. 被引量:8
  • 7Viola P, Jones M J. Rapid Object Detection using a Boosted Cascade of Simple Features[C]. IEEE Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, 2009.
  • 8Li Y, Gong S, Liddell H. Reeognising Trajectories of Facial Identities Using Kernel Discriminant Anal- ysis[J]. Image and Vision Computing, 2008, 21 (13/14): 1 077-1 086.
  • 9Romdhani S, Blanz V, Vetter T. Face Identification by Fitting a 3D Morphable Model Using Linear Shape and Texture Functions[C]. The 7th European Conference on Computer Vision, London, 2009.
  • 10胡元奎,汪增福.快速的人脸轮廓检测及姿态估计算法[J].模式识别与人工智能,2006,19(5):652-657. 被引量:4

二级参考文献76

  • 1李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:896
  • 2王晖,卢健,孙小芳.人脸识别中嵌入式隐Markov模型结构的优化算法研究[J].武汉大学学报(信息科学版),2006,31(7):573-575. 被引量:6
  • 3Swets D L, Weng J. Using Discriminant Eigenfetures for Image Retrieval [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1996, 16 (8):831-836.
  • 4Yu H, Yang J. A Direct LDA Algorithm for High- dimensional Data with Application to Face Recognition[J]. Pattern Recognition, 2001, 34(10):2 067- 2 070.
  • 5Huang R, Liu Q, Lu H, et al. Solving the Small Size Problem of LDA[J]. Int'l Conf. Pattern Recognition,2002, 3(8) ;29-32.
  • 6Cevikalp H, Neamtu M, Wilkes M, Barkana A. Discriminative Common Vectors for Face Recognition[J]. Pattern Analysis and Machine Intelligence, 2005, 27 (1):4-13.
  • 7belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces:Recognition Using Class Specific Linear Projection[J]. Pattern Analysis and Machine Intelligence, 1997, 19 (7):711-720.
  • 8Bing Y, Lianfu J, Ping C. A New LDA-Based Method for Face Recognition[J]. Int'l Conf. Pattern Recognition, 2002(1) :168-171.
  • 9Liu J, Chen S C. Discriminant Common Vectors Versus Neighbourhood Omponents Analysis and Laplacianfaces: a Comparative Study in Small Sample Size Problem[J]. Image and Vision Computing, 2006, 24(3) :249-262.
  • 10Golub G H, Loan C F V. Matrix Computations (third ed)[M]. Baltimore, MD: Johns Hopkins University Press, 1996.

共引文献27

同被引文献73

  • 1王静静,林明秀,魏颖.基于灰度相关的帧间差分和背景差分相融合的实时目标检测[J].中南大学学报(自然科学版),2009,40(S1):142-148. 被引量:12
  • 2王华,王祁,孙金玮.基于自相关函数的自然纹理图像分形维数的估计[J].北京航空航天大学学报,2004,30(8):718-722. 被引量:9
  • 3李粉兰,徐可欣.一种应用于人脸正面图像的眼睛自动定位算法[J].光学精密工程,2006,14(2):320-326. 被引量:20
  • 4董文会,曲培树,吴晓娟,徐祗军.复杂背景下多姿态人脸图像中的人眼检测[J].山东大学学报(工学版),2006,36(3):18-21. 被引量:4
  • 5HSU R L, MOHAMED A M, JAIN A K. Face detection in color images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5) :696-706.
  • 6BHUIYAN M A, AMPORNARAMVETH V, MUTO S Y, et al. Face detection and facial feature localization for human-machine interface[J]. NII Journal, 2003 ( 05 ): 25- 39.
  • 7LI S Z, ZHANG Zhenqiu. Float boost learning and statistical face detection [ J ]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2004, 26 (9) : 1112-1123.
  • 8TSAI Chunming, YEH Zongmu. Contrast compensation by fuzzy classification and image illumination analysis for back-lit and front-lit color face images [J]. IEEE Transactions on Consumer Electronics, 2010, 56 ( 3 ) : 1570-1578.
  • 9ATSUSHI Z, NISHIDA A. Statistical-noise effect on autocorrelation function of line-edge and line-width roughness [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2010, 28 (6) : 1242-1250.
  • 10KURITA T, OTSU N, SATO T. A face recognition method using higher order local autocorrelation and multivariate analysis [C]//Proceedings of 11th IAPR. Hague: IEEE Computer Society, 1992:213-216.

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部