摘要
提出了一种基于乘积模型的极化SAR滤波方法。首先基于乘积模型分离纹理信息和极化信息,然后分别独立地进行滤波,最后再合成协方差矩阵。实验表明,本方法有效可行,有较好的极化保持性能。
A class of filters for polarimetric SAR imagery is proposed in this paper.It is assumed that polarimetric SAR data include two kind of information,texture information and polarimetric information,of which both are independent.In the multiplicative model,polarimetric covariance matrix is the carrier of those kinds of information expressed by total power and normalized covariance matrix and the original covariance matrix is decomposed to total power and normalized polarimetric covariance matrix.For the filters proposed in this study,texture and polarimetric information are separated firstly,and then filtered respectively,and finally covariance matrix is generated based on the multiplicative model.Experiments demonstrate that the proposed filter is valid and effective and polarimetric information is preserved well.
出处
《武汉大学学报(信息科学版)》
EI
CSCD
北大核心
2011年第10期1168-1171,共4页
Geomatics and Information Science of Wuhan University
基金
国家863计划资助项目(2009AA12Z145)
国家自然科学基金资助项目(41071269)
关键词
SAR
极化
滤波
斑点噪声
乘积模型
SAR
polarimetry
filter
speckle
multiplicative model