摘要
研究了如下一种场站设置问题:设S是欧空间Rm中由有限个点A1,A2,…,An组成的集合,d(Ai,Aj)表示点Ai和Aj之间的距离.令σ(S)=1≤∑i<j≤nd(Ai,Aj),d(S)=1≤mii≠nj≤n{d(Ai,Aj)},μ(m,n)=dσ((SS))(SRm,|S|=n),infμ(m,n)=mindσ((SS))SRm,|S|=n.估计infμ(m,m+2)与infμ(m,n)等的值,证明infμ(1,n)=n+31C2n,infμ(m,m+1)=C2m+1.并提出了几个猜想.
The following problem of site setting was considered: Let SRm be a set consisting of n points A1,A2,…,An,d(Ai,Aj) which stand for the distance between Ai and Aj,σ(S)=∑1≤ij≤nd(Ai,Aj),d(S)=min1≤i≠j≤n{d(Ai,Aj)},μ(m,n)=σ(S)d(S)(SRm,|S|=n),inf μ(m,n)=min{σ(S)d(S)SRm,|S|=n}.It was proved that inf μ(1,n)=n+13C2n,inf μ(m,m+1)=C2m+1.And the value of inf μ(m,m+2),inf μ(m,n),etc,was estimated.Some conjectures were given.
基金
安徽省教育厅自然科学基金(2005KJ220)资助
关键词
场站设置
离散几何
正则单形
setting sites
discrete geometry
regularly simplex