期刊文献+

不同变位模式下刚性挡土墙的动主动土压力 被引量:3

Dynamic Active Earth Pressure on Retaining Wall under Various Modes of Movement
下载PDF
导出
摘要 基于Mononobe-Okabe理论的基本假设,通过对滑动土体中水平薄层单元的分析,建立了墙体平动(T)模式、墙体绕基础转动(RB)模式和墙体绕墙顶转动(RT)模式下的主动土压力的一阶微分方程式,给出了土压力强度、土压力合力、土压力作用点的理论计算公式,并将该理论计算公式与Mononobe-Okabe理论结果进行了比较.结果表明:土压力强度分布呈非线性分布,合力作用点到墙底的距离依(RB)模式、(T)模式和(RT)模式次序增大.当地面荷载q0=0时,各种墙体变位模式下的动土压力合力与Mononobe-Okabe理论相同. On the basis of the Assumption of Mononobe-Okabe theory,the first-order differential equation for active earth pressure on the retaining wall was set up for the translation(T) mode,movement modes of rotation around base(RB) and rotation around top(RT) by analyzing slice elements extracted from the sliding soil wedge.And the formulas for calculating the unit earth pressure,the resultant earth pressure and the action point of the result pressure were given.The comparison between calculated results with the present formulas and Mononobe-Okabe theory has shown that the unit earth pressure is nonlinearly distributed;and that the distance from the action point of resultant pressure to the base of wall increases with the order of(RB)mode,(T) mode,and(RT) mode.It has also indicated that the calculated results of the resultant pressure under various modes of movement are in accordance with those of Mononobe-Okabe theory for q0=0.
作者 李刚 张凤涛
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第9期16-21,共6页 Journal of Hunan University:Natural Sciences
基金 湖南省建设厅资助项目
关键词 变位模式 挡土墙 主动土压力 地震系数 wall movement mode retaining wall active earth pressure earthquake coefficient
  • 相关文献

参考文献3

二级参考文献39

  • 1阮波,冷伍明,李亮.土压力非线性分布的研究[J].铁道科学与工程学报,2001(4):73-76. 被引量:12
  • 2ISHIBASHI I,FANG Y S.Dynamic earth pressures with different wall movement modes[J].Soils and Foundations,1987,27(4):11-22.
  • 3RICHARDS R,HUANG C,FISHMAN K L.Seismic earth pressure on retaining structures[J].Journal of Geotechnical and Geoenvironmental Engineering,1999,125(9):771-778.
  • 4WU G X,FIN Wdl.Seismic lateral pressures for design of rigid walls[J].Canadian Geotechanical Journal,1999,36:509-522.
  • 5顾慧慈.挡土墙土压力计算[M].北京:中国建材工业出版社,2001..
  • 6Scott R F. Induced-induced pressure on retaining walls [C]. Proc. of 5th World Engineering Conf. on Earthquake Engineering. Tokyo, Japan, 1973:1611-1620.
  • 7Jain S K,Scott R F. Seismic analysis of cantilever retaining walls[C]. 10th Int. Conf. on Structrual Mechanics in Reactor Technollogy. California, USA : Bechtel Western Power Company,1989:241-246.
  • 8Alampalli S,Elgamal A W. Retaining wall: computation of seismically induced deformations[C]. Proc. 2nd Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Missouri USA:University of MissouriRolla, 1991 : 635-642.
  • 9Siller T J, Christiano P P,Bielak J. Seismic response of tiedback retaining walls[J]. Earthquake Engineering and Structural Dynamics, 1991,20(7): 605-620.
  • 10Veletsos A S,Younan A H. Dynamic modeling and response of soil-wall system[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1994, 120(12): 2 155-2 179.

共引文献63

同被引文献36

  • 1卢坤林,朱大勇,杨扬.任意位移模式刚性挡土墙土压力研究[J].岩土力学,2011,32(S1):370-375. 被引量:15
  • 2JTGD30-2004.公路路基设计规范[s].[S].,..
  • 3RICHARDS R, ELMS D C: Seismic behavior of gravity retaining walls[J]. Journal of the Geoteehuieal Engineering Division, 1979, 105(GT4): 449-464.
  • 4NADIM F, WHITMAN R V. Seismically induced displacement of retaining waUs[J]. Journal of Geo- technical Engineering, 1983, 109(7): 915- 931.
  • 5ZENG X, STEEDMAN R S. Rotating block method for seismic displacement of gravity walls[J]. Journal of Geoteehuieal and Geoenvironmental Engineering, 2000, 126(8): 709-717.
  • 6CALTABIANO S, CASCONE E, MAUGERI M. Seismic stability of retaining walls with surcharge[J]. SoilDynamics and Earthquake Engineering, 2000, 20:469 -476.
  • 7MYLONAKIS C: KLOUKINAS P, PAPANTONOP- OULOS C. An alternative to the Mononobc-Okabe equations for seismic earth pressure[J]. Soil Dynamics and Earthquake Engineering, 2007, 27: 957-969.
  • 8CHEN W F. Limit analysis and soil plasticity[M]. Amsterdam: Elsevier Science, 1975.
  • 9SKRABL S, MACUH B. Upper-bound solutions of three- dimensional passive earth pressure[J]. Canadian Geotechnical Journal, 2005, 42" 1449- 1460.
  • 10YANG X L. Upper-bound limit analysis of active earth pressure with different fracture surface and nonlinear yield criterion[J]. Theoretical and Applied Fracture Mechanics, 2007, 47: 46-56.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部