期刊文献+

一种关联规则挖掘的高效更新算法

An Effective Updating Algorithm for Mining Association Rules
下载PDF
导出
摘要 针对关联规则挖掘中的高效更新问题,对增量和负增量问题进行了讨论,提出当最小支持度发生变化时可归结为数据库发生变化的情形进行讨论。采用十字链表来分别存储原数据库DB和变化数据库db中,各频繁项集及其支持度s1和s2,通过对s1,s2及最小支持度s0的比较分析,判断项集是否为频繁项集,减少了扫描数据库的次数,提高了更新后的挖掘效率。并通过仿真实验,证明了算法的高效性。 Both incremental and negative incremental field are discussed aiming at the problem of mining association rules effectively.It is suggested that the problem of change of minimum support can be transformed to the problem of updating database.The crossing lists are used to storage all frequent items and their supports in both the original and the changed database.After analyzing the relation between s1,s2 and s0,whether an item is frequent or not can be figured out.By this method,the I/O time is largely reduced,and the efficiency of mining association rules has been improved.Finally,the emulation experiment verifies its effectiveness.
出处 《电子科技》 2011年第10期85-87,92,共4页 Electronic Science and Technology
关键词 关联规则挖掘 高效更新 十字链表 频繁项集 mining association rules updating effectively crossing list frequent item
  • 相关文献

参考文献4

二级参考文献17

  • 1宋中山,成林辉,吴立峰.一种基于关联规则的增量数据挖掘算法[J].湖北大学学报(自然科学版),2006,28(3):240-243. 被引量:9
  • 2Agrawal R.Mining association rules between sets of items in large database[C]//Proceedings of ACM SIGMOD Conference on Management of Data, Washington, DC, May 1993 : 207-216.
  • 3Cheung D W, Lee S D,Kao B.A general incremental technique for updating discovered association rules[C]//Proc 1997 Int'l Conf on Databases Systems for Advanced Applications, Melbowme, Australia, 1997-08 : 14.
  • 4Cheung D W,Han Jia-wei,Ng V T,et al.Maintance of discovered association rules in large database: An incremental updating technique[C]//Proc 12th Int Conf on Data Enginerering.New oraleans,Louisinana:IEEE Computer Soeitey, 1996: 106-114.
  • 5Authukrishnan S.Data streams alogrithms and applications[C]// Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algoriths, 2003.
  • 6Quinlan J R.C4.5: Programs for machine learing[M].San Mateo, CA:Morgan Kaufmann, 1993.
  • 7Mannila H, Toibonen H,Inkeriverkam A.Effcient alogrithms for discovering association mles[C]//Proceedings of AAAI Workshop on Knowledge Discovery In Database, 1994(8) : 181-192.
  • 8Klemettinen M,Mannila H, Ronkainen P,et al.Finding interesting rules from large sets of discovered association rules[C]//Proc of the Third Int'l Confon Information and Knowledge Management, Gaithursberg, Maryland, 1994 : 401-407.
  • 9Hart J,Fu Y.Discovery of multiple-level association rules from large databases[C]//Proceedings of the 21st ULDB Conference, Zurich, Switherland, 1995 : 402-419.
  • 10Thomas S, Chakravarthy S.Incremental mining of constrained associations[C]//Proc of the 7th Intl Conf of High Performance Computing, 1998:1-19.

共引文献227

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部