期刊文献+

一个改进的决策树算法 被引量:1

An Enhanced ID3 Algorithm Based on Attribute Attention
下载PDF
导出
摘要 Iterative Dichotomiser version3(ID3)算法是数据挖掘中经典的决策树分类算法,其核心是分裂训练集属性的选择标准,即分裂前后的信息增益量最大,用该标准选择属性时对于取值较多的属性具有较强依赖性。剖析了ID3算法存在的不足并加以改进,引入了属性关注度,提出了改进算法AAID3算法。实验表明改进算法对原ID3算法的取值偏向问题有所克服并使分类更加准确,决策树更加简明。 In decision tree sorting,Iterative Dichotomiser version 3(ID3) is a classical algorithm used to generate a decision tree invented by Ross Quinlan.Its core lies in the split-off training which lumped the standard of attributes preference,namely,information gain is of maximum quantity both before split-off and after split-off.The use of this preference standard to select attributes has a strong dependence in regard of the milti-valued attributes preference.Disadvantages of ID3 algorithm were analyzed and improved through introducing attribute attention.To the effect,AAID3 algorithm was proposed.Experimental results expatiated AAID3 algorithm is superior to the ID3 in accuracy of classification,concision of decision tree,and independence from multi-valued attributes.
出处 《辽宁工业大学学报(自然科学版)》 2011年第4期225-227,232,共4页 Journal of Liaoning University of Technology(Natural Science Edition)
关键词 ID3算法 属性关注度 信息增益 AAID3算法 ID3 algorithm attribute attention information gain AAID3 algorithm
  • 相关文献

参考文献8

  • 1Quinlan J R. Induction of decision tree[J]. Machi-ne Learning, 1986(1): 81-106.
  • 2HartJW,MichelineKamber.数据挖掘:概念与技术[M].范明,孟晓峰,译.2版.北京:清华大学出版社,2010:184-200.
  • 3LiuB.WEB数据挖掘[M].俞勇,薛桂荣,韩定一,译北京:清华大学出版社.2009:45-56.
  • 4滕皓,赵国毅,韩保胜.改进决策树的研究[J].济南大学学报(自然科学版),2002,16(3):231-233. 被引量:23
  • 5Richard J Roiger,Michael W Geatz.数据挖掘导论[M].翁敬农,译.北京:清华大学出版社,2003:73-86.
  • 6SOMAN K P.数据挖掘基础教程[M].范明,牛常勇,译.北京:机械工业出版社,2009.
  • 7曲开社,成文丽,王俊红.ID3算法的一种改进算法[J].计算机工程与应用,2003,39(25):104-107. 被引量:79
  • 8陈伟.改进的ID3算法构造决策树[J].淮南师范学院学报,2010,12(3):33-35. 被引量:3

二级参考文献22

  • 1李宁,乐琦.决策树算法及其常见问题的解决[J].计算机与数字工程,2005,33(3):60-64. 被引量:25
  • 2石纯一 黄昌宁.人工智能原理[M].清华大学出版社,1996..
  • 3韩家炜,坎伯.数据挖掘概念与技术[M].范明,孟小峰译.北京:机械工业出版社.2000.
  • 4Quinlan J R.Simplifying Decision Trees[J].International Journal of Man-Machine Studies,1987,27(3):221-234.
  • 5R·格罗恩.数据挖掘一构筑企业竞争优势[M].西安:西安交通大学出版社,2001..
  • 6Quinlan J R.Induction of decision tree[J].Machine Learning, 1986; (1): 81-106.
  • 7Quinlan J R.C4.5:Programs for Machine Learnint[M].Morgan Kaufmann,1992.
  • 8Quinlan J R.Discovering rules from large collections of examples:Acase study[C].In:Michie D,eds.Expert Systems in the Micro Electronic Age,Edinburgh University Press,1979.
  • 9Quinlan J R.Learning efficient classification procedures and their application to chess endgames[C].In:R S Michalski,J G Carbonell,T M Mitchell eds.Machine Learning:An Artificial Intelligence Approach, Tioga, 1983.
  • 10Quinlan J R.The effect of noise on concept learninl[C].In:R S Michalske,JG Carbonell,T M Mitchell eds.Machine Learning:An Artificial Intelligence Approach,Morgan Kaufmann,1986.

共引文献112

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部