期刊文献+

变分不等式的并行算法(英文) 被引量:2

Parallel Algorithm for Variational Inequalities
下载PDF
导出
摘要 对于Lipschitz映射,一致强制性弱于强单调性,但强于单独的单调性.而伪一致强制性弱于一致强制性.本文给出了由双空间产生的映射的变分问题的并行算法.本质上,并行算法是利用辅助问题准则实行迭代计划.另外,本文还给出了这类算法的适当的收敛性条件,并证明了在伪一致强制条件下算法的收敛性. For Lipschitz operators, the Dunn property is weaker than strong monotonicity, but is stronger than simple monotonicity. The pseudo-Dunn property is weaker than the Dunn property. In this paper, we consider a new parallel algorithm for an operator defined over the product of two spaces. Essentially, the idea is to use the auxiliary problem principle to perform the iterative schemes. In addition, other assumptions are proposed for the sequential version of the algorithm and we study the convergence under the pseudo-Dunn property assumption.
出处 《工程数学学报》 CSCD 北大核心 2011年第5期598-608,共11页 Chinese Journal of Engineering Mathematics
关键词 变分不等式 单调性 伪一致强制性 优化问题 算法收敛性 variational inequalities monotonicity pseudo-Dunn property optimization problems convergence of algorithms
  • 相关文献

参考文献9

  • 1Elfarouq N. Pseudomonotone variational inequalities: convergence of the auxiliary problem method[J] Journal of Optimization Theory and Applications, 2001, 111(2): 305-326.
  • 2Elfarouq N, Cohen G. Progressive regularization of variational inequalities and decomposition algorithms[J] Journal of Optimization Theory and Applications, 1998, 97(2): 407-433.
  • 3Cohen G. Optimization by decomposition and coordination: a unified approach[J]. IEEE Transactions on Automatic Control, 1978, 23:222-232.
  • 4Cohen G. Auxiliary problem principle and decomposition of optimization problems[J]. Journal of Optimiza- tion Theory and Applications, 1980, 32(3): 277-305.
  • 5Mangasarian O L. Pseudoconuex functions[J]. SIAM Journal on Control, 1965, 3:281-290.
  • 6Mangasarian O L. Nonlinear Programming[M]. Philadelphia: SIAM, 1994.
  • 7Karamardian S. Complementarity problems over cones with monotone and pseudomonotone maps[J]. Journal of Optimization Theory and Applications, 1976, 18(4): 445-454.
  • 8Harker P T, et al. Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms, and applications[J]. Mathematical Programming, 1990, 48:161-220.
  • 9Cohen G, et al. Nested monotony for variational inequalities over product of spaces and convergence of iterative algorithms[J]. Journal of Optimization Theory and Applications, 1988, 59(3): 369-390.

同被引文献25

  • 1韩继业,修乃华,戚厚铎.非线性互补理论与算法[M].上海:上海科学技术出版社,2003.
  • 2Goldstein A A. Convex programming in Hilbert space[ J]. Bull Am Math Soc, 1964,70:709.
  • 3Levitin E S, Polyak B T, Constrained minimization problems[J]. USSR Comput Math Math Phys,1966,6:1.
  • 4Korpelevich G M. The extragradient method for finding saddle points and other problems[ J]. Matecon, 1976,12:747.
  • 5He B S, Yuan X M, Zhang J Z. Comparison of two kinds of prediction - correction methodsfor monotone variational inequalities[J]. Comput Optim Appl,2004,27:247 - 267.
  • 6Yan X H, Han D R, Sun W Y. A serf - adaptive projection method with improved step - size for solving variational inequalities[J]. Comput Math Appl,2008,55 (4) :819 - 832.
  • 7Xu M H, Yuan X M, Huang Q L. An improved general extra - gradient method with refined step size for nonlinear monotone vari- ational inequalities[J]. J Glob Optim ,2007 ,39 : 155 - 169.
  • 8Abroad K, Kazmi K R, Rehman N. Fixed -point technique for implicit comlementarity problem in Hilberet lattice[ J ]. J Optim Theo Appl, 1997,93:72 - 97.
  • 9Noor M A. Projection iterative methods for extended general variational inequalities [ J ]. J Appl Math Comput,2010,32:83 -95.
  • 10Farouq N El. Pseudomonotone variational inequalities : Convergence of the auxiliary problem method [ J ]. J Optim Theo Appl, 2001,111 (2) :305 -326.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部