期刊文献+

Rosenau-Burgers方程一种新的数值解法 被引量:3

A New Numerical Method for Rosenau-Burgers Equation
下载PDF
导出
摘要 本文讨论Rosenau-Burgers方程初边值问题的数值解法.针对Rosenau-Burgers方程构造了一个新的差分格式,把网格分为奇、偶两套独立的网格,在偶数网格点采用显式格式,在奇数网格点采用Crank-Nicolson格式,这样偶、奇、显、隐交替的方法使计算量减少.同时针对非线性项进行了线性化,使格式的近似解更精确.给出了稳定性和收敛性的严格理论证明,数值实验结果表明了理论证明的正确性及格式的有效性和可行性,具有推广价值. In this paper,we discuss the numerical method of the initial-boundary value problem of Rosenau-Burgers equation.A new finite di?erence scheme is proposed for the Rosenau-Burgers equation.We separate the grid into the odd and the even parts,and apply the explicit scheme and Crank-Nicolson scheme at the even and the odd grid points,respectively.This scheme is easy to computation,and the approximation solutions are more accurate than transforming the nonlinear term into the linear term.The numerical experiment indicates the theoretical is accurate and the computation is effective,and the scheme is feasiable and worthy popularizing.
出处 《工程数学学报》 CSCD 北大核心 2011年第5期665-670,共6页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10571148 10961024) 新疆高校科研计划(XJEDU2007I02)~~
关键词 Rosenau-Burgers方程 非线性项 收敛性 稳定性 Rosenau-Burgers equation nonlinear term convergence stability
  • 相关文献

参考文献7

  • 1Rosenau P. A quasi-continuous description of a nonlinear transmission line[J]. Physica Scripta, 1986, 34: 827-829.
  • 2Rosenau P. Dynamics of dense discrete systems[J]. Progress of Theoretical Physics, 1988, 79:1028-1042.
  • 3Park M A. On the Rosenau equation[J]. Computation and Applied Mathematics, 1990, 9(2): 145-152.
  • 4Liu L P, Mei M. A better asymptotic profile of Rosenau-Burgers equation[J]. Applied Mathematics and Computation, 2002, 131(1): 147-170.
  • 5Mei M. Long-time behavior of solution for Rosenau-Burgers equation(I)[J]. Applicable Analysis, 1996, 63(3--4): 315-330.
  • 6Mei M. Long-time behavior of solution for Rosenau-Burgers equation(II)[J]. Applicable Analysis, 1998 68(3--4): 333-356.
  • 7Hu B, Xu Y C, Hu J S. Crank-Nieolson finite difference scheme for the Rosenau-Burgers equation[J] Applied Mathematics and Computation, 2008, 204:311-316.

同被引文献34

  • 1Rosenau P. A quasi-continuous description of a non- linear transmission line[J]. Physiea Scripta, 1986, 34 (8) : 827-829.
  • 2Rosenau P. Dynamics of dense discrete systems[J]. Progress of Theoretical Physics, 1988, 79 (9) : 1028-1042.
  • 3Park M A. On the Rosenau equation[J]. Computa- tion and Applied Mathematics, 1990, 9(2): 145-152.
  • 4LIU Li-ping, MEI Ming. A better asymptotic profile of Rosenau-Burgers equation[J]. Applied Mathemat- ics and Computation, 2002, 131(1) ; 147-170.
  • 5LIU Li-ping, MEI Ming, WONG Yau-shu. Asymp- totic behavior of solutions to the Rosenau-Burgers equation with a periodic initial boundary[J]. Nonlin- ear Analysis, 2007, 67(8): 2527-2539.
  • 6MA Wei-yuan, YANG Ai-li, WANG Yang. A sec- ond-order accurate linearized difference scheme for the Rosenau-Burgers equation[J]. Journal of Information & Computational Science, 2010, 7(8): 1793-1800.
  • 7HU Bing, XU You-cai, HU Jin-song. Crank Nicob son finite difference scheme for the Rosenau-Burgers equation[J]. Applied Mathematics and Computation, 2008, 204(1) : 311-316.
  • 8Khaled O, Fayeal A, Talha A, etal. A new conser- vative finite difference scheme for the Rosenau equa- tion [J]. Applied Mathematics and Computation, 2008, 201(1 2): 35-43.
  • 9肖龙飞,杨建民,于洋.水波传播的无网格数值模拟[J].上海交通大学学报,2007,41(9):1533-1537. 被引量:2
  • 10Park M A. On the Rosenau equation[J]. Appl Math Comput, 1990,9(2) :145.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部