期刊文献+

一维p-Laplace方程解的整体分支结构

Global bifurcation structure for the p Laplace equation in one dimension
下载PDF
导出
摘要 讨论一维p-Laplace方程在Dirichlet边值条件下的非线性特征值问题,并结合Leray-Schauder度理论以及标准分支定理,讨论一维p-Laplace方程边值问题解的整体分支结构。 This paper discusses the nonlinear eigenvalue for the p Laplace equation with the Dirichlet boundary condition in one dimension.And Leray Schauder degree theory and the standard global bifurcation theory are used to get the global bifurcation structure for the p Laplace equation in one dimension.
作者 胡松
出处 《武汉科技大学学报》 CAS 2011年第5期384-387,共4页 Journal of Wuhan University of Science and Technology
基金 国家自然科学基金资助项目(10901126) 武汉科技大学冶金工业过程系统科学湖北省重点实验室开放基金资助项目(C201007)
关键词 特征值 整体分支 LERAY-SCHAUDER度 eigenvalue global bifurcation Leray Schauder degree
  • 相关文献

参考文献9

  • 1Rabinowitz P H. Some global results for nonlinear eigenvalue problems[J].J Funct Anal, 1971 (7):487-513.
  • 2Del Pino M, Manasevich R. Global bifurcation from the eigenvalues of the p Laplacian[J].J Diff Equations, 1991, 92(2):226 -251.
  • 3赵昆,陈祖墀.加权p-Laplace方程解的整体分叉问题[J].数学物理学报(A辑),2005,25(2):145-157. 被引量:1
  • 4Drabek P, Otani M. Global bifurcation result for the p-biharmonic operator[J]. Electronic Journal of Differential Equations, 2001, 48 : 1-19.
  • 5胡松.加权p-harmonic方程的非线性特征值问题.华中师范大学学报:教学与研究卷,2008,(3):1-5.
  • 6胡松.加权p-harmonic方程解的整体分支结构[J].华中师范大学学报(自然科学版),2009,43(1):14-18. 被引量:1
  • 7Benedikt J. Global bifurcation result for Dirichlet and Neumann p-biharmonic problem[J]. Nonlinear Differential Equations and Applications, 2007 (14) : 541-558.
  • 8Evans L C. Partial differential equations[M]. Rhode Island: American Mathematical Society, 1998.
  • 9叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1999..

二级参考文献23

  • 1胡松.加权p-harmonic方程的非线性特征值问题.华中师范大学学报:教学与研究卷,2008,(3):1-5.
  • 2Rabinowitz P H..Some global results for nonlinear eigenvalue problems[J].J Funct Anal,1971,7:487-513.
  • 3Gilbarg D,Trudinger N S.Elliptic Partial Differential Equations of Second Order[M].Berlin/Heidelberg/New York/Tokyo:Seeond Ed Springer-Verlag.1983.
  • 4Drábek P,Otani M.Global bifurcation result for the p-biharmonie operator[J].Electronic Journal of Differential Equations,2001,48:1-19.
  • 5Drábek P,Kufner A,Nieolosi F.Quasilinear Elliptic Equations with Degenerations and Singularities[M].Berlin/New York:Walter de Gruyter,1997.
  • 6Dráhek P.Solvability and Bifurcations of Nonlinear Equations[M].New York:Longman Scientific &Technical,1992.
  • 7Skrypnik I V.Nonlinear Elliptic Boundary Value Problems[M].Leipzig:Teubner,1986.
  • 8Del Pino M A, Manasevich R F. Global bifurcation from the eigenvalues of the p-Laplacian. J Diff Equations,1991, 92(2): 226-251.
  • 9Vy Khoi Le. Global bifurcation in some degenerate quasilinear elliptic equations by a variational inequality approach. Nonlinear Analysis, 2001, 46: 567-589.
  • 10Brown K J, Stavrakakis N M. Global bifurcation results for a semilinear elliptic equation on all of R+N. Duke Math Journal, 1996, 85(1): 75-94.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部