期刊文献+

有限单群的一些数量性质 被引量:2

Some quantitative properties of finite simple groups
下载PDF
导出
摘要 针对文献中关于素图分类存在的问题,利用单群的孤立点集对其进行了修正,并对原结论给出了一个简洁证明。为了刻画所有的交错单群,采取单群和谱相结合的方法,可知交错单群的谱与其他单群不同。同时,还得到一个有趣的数量结果,即阶能被素数p整除的最小的非交换单群是Al t5或A1(p)。这些成果丰富了有限群的数量刻画这一专题内容。 There are some errors in the paper.This paper proposes to remedy the errors by independent set of simple groups,and also provides a simple proof.To characterize all alternating simple groups,the method of combining simple group and spectrum is applied.It finds that the spectrum of any alternating simple group is different from other simple groups' spectrum.At the same time,an interesting result is obtained,which is the smallest non-abelian simple groups whose order can be divided by prime p is Alt5 or A1(p).The results in this study enrich the arithmetic properties of finite groups.
作者 何怀玉
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2011年第4期599-602,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(10871032) 上海市优青基金资助项目(szf10016)
关键词 单群 交错群 刻画 素图 交错单群 非交换单群 单群的孤立点集 simple group alternating group spectrum characterization prime graph alternating simple group non-abelian simple groups independent set of simple groups
  • 相关文献

参考文献11

  • 1Lucido M S, Moghaddamfar A R, Groups with complete prime graph connected components[J]. J.Group Theory, 2004 (7): 373-384.
  • 2施武杰.Alt5的一一个特征性质.西南师范大学学报:自然科学版,1986,(11):11-14.
  • 3Praeger C E,Shi W J. A characterization of some alternating and symmetric groups[J]. Comm. Algebra, 1994, 22 (5): 1507-1530.
  • 4Kondratiev A S, Mazurov V D. Recognition of alternating groups of prime degree from their element orders[J]. Sib.Math.J., 2000, 41 (2): 294-302.
  • 5Zavarnitisn A V. Recognition of alternating groups of degrees r+1and r+2 for prime r and the group of degree 16 by their element order sets[J]. Algebra and Logic, 2000, 39 (6): 370-377.
  • 6何怀玉,施武杰.用元的阶的集合刻画交错单群A_(22)(英文)[J].西南大学学报(自然科学版),2009,31(8):121-123. 被引量:4
  • 7He H Y, Shi W J. A note on the adjacency criterion for the prime graph and the charaterization of Ce3 [J]. Algebra Colloquium (to appear).
  • 8Mazurov V D, Characterizations of groups by arithmetic properties, Algebra Colloquium, 2004, 11 (1): 129-140.
  • 9Brauer A. On a property of k consecutive integers[J]. Bull.Amer. Math.Soc.,1941 (47):328-331.
  • 10Vasiliev A V, Vdovin E E An adjacency criterion for the prime graph of a finite simple group[J]. Algebra and Logic, 2005, 44 (6): 381-406.

二级参考文献12

  • 1钱国华,施武杰.A_5的一个特征及其初等证明[J].西南大学学报(自然科学版),2007,29(2):1-4. 被引量:7
  • 2Mazurov V D. Characterizations of Groups by Arithmetic Properties [J]. Algebra Colloquium, 2004, 11 (1) : 129 -- 140.
  • 3Kondratiev A S, Mazurov V D. Recognition of Alternating Groups of Prime Degree from Their Element Orders [J].Siberian Math J, 2000, 41(2): 294-302.
  • 4Zavarnitsin A V. Recognition of Alternating Groups of Degrees r+1 and r+ 2 for Prime r and the Group of Degree 16 by Their Element Order Sets [J]. Algebra and Logic, 2000, 39(6) : 370 -- 377.
  • 5Mazurov V D. Recognition of Finite Groups by a Set of Orders of Their Elements [J]. Algebra and Logic, 1998, 37(6) : 371 -- 379.
  • 6Vasiliev A V. On Connection Between the Structure of a Finite Group and the Properties of its Prime Graph [J].Siberian Math J, 2005, 46(3):396-404.
  • 7Zsigmondy K. Zur Theorie der Potenzreste[J].Monatsh Math Phys, 1982, 3 : 265 -- 284.
  • 8Mazurov V D. Characterizations of Finite Groups by Sets of Their Elements Orders[J].Algebra and Logic, 1997, 36(1) : 23 -- 32.
  • 9Guralnick R M, Tiep P H. Finite Simple Unisingular Groups of Lie Type [J]. J Group Theory, 2003, 6:271 -310.
  • 10Conway J H, Curtis R T, Norton S P, et al. Atlas of Finite Groups [M]. Oxford: Clarendon Press, 1985.

共引文献7

同被引文献16

  • 1何怀玉.李型单群C_n(3)的谱刻画[J].辽宁工程技术大学学报(自然科学版),2012,31(3):409-412. 被引量:3
  • 2施武杰.As的一个特征性质[J]西南师范大学学报(自然科学版),1986(03):11-14.
  • 3Mazurov V D. Characterizations of groups by arithmetic properties[J].Algebra Colloquium,2004,(01):129-140.
  • 4Alekseeva O A,Kondratiev A S. Quasirecognition of one class of fimite simple groups by the set of element orders[J].Siberian Mathematical Journal,2003,(02):195-207.doi:10.1023/A:1022931316876.
  • 5He H Y,Shi W J. Recognition of some finite simple groups of type Dn(3)by spectrum[J].International Journal of Algebra and Computation,2009,(05):681-698.doi:10.1142/S0218196709005299.
  • 6He H Y,Shi W J. A note on the adjacency criterion for the prime graph and the charaterization of Cp(3)[J].Algebra Colloquium,.
  • 7Vasiliev A V. On connection between the structure of a finite group and the properties of its prime graph[J].Siberian Mathematical Journal,2005,(03):396-404.doi:10.1159/000231882.
  • 8sigmondy K Z. Zur theorie der potenzreste[J].Monatsh Math phys,1982,(01):265-284.
  • 9Vasiliev A V,Vdovin E P. An adjacency criterion for the prime graph of a finite simple group[J].Algebra and Logika,2005,(06):381-406.
  • 10Chen G Y,Mazurov V D,Shi W J. Recognition of the finite almost simple groups PGL2(q) by their spectrum[J].Journal of Group Theory,2007,(01):71-85.doi:10.1515/JGT.2007.007.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部