期刊文献+

一种有轨迹标识的利用测量生成新目标密度的GM-PHD滤波器

A Gaussian Mixture PHD Filter with Track Label and Target-Birth Density Generation Using Measurements
下载PDF
导出
摘要 在存在杂波、漏检、目标数目未知和变化的情况下,PHD滤波器是一种多目标跟踪新方法,GM-PHD滤波器是PHD滤波器的一种近似实现。然而,GM-PHD滤波器没有提供单个目标状态估计的身份,而构建目标运动轨迹需要目标状态估计的身份,同时,现有的GM-PHD滤波器在新目标密度生成时对新目标出现位置进行了限制,难以对观测空间任意位置随机出现的目标进行跟踪。为解决非线性观测系统GM-PHD滤波器中目标状态估计的身份标识和新目标密度生成问题,设计了一种新的GM-PHD滤波器。该滤波器利用传感器的观测数据生成新目标密度,通过给滤波器输出的高斯项增加专有身份标识并使用身份标识将源于同一目标不同时刻的目标状态估计关联起来。仿真实验验证了滤波算法的有效性。 The probability hypothesis density(PHD) filter is a novel approach to tracking an unknown and time-varying number of targets in presence of clutter,miss-detection.The Gaussian mixture PHD(GM-PHD) filter is an approximation implementation of the PHD filter.However the GM-PHD filter do not provide identities of individual target state estimates,which are needed to construct tracks of individual targets.Meanwhile,it is difficult for the GM-PHD filter to track the targets randomly appearing from uncertain position of the observation space because in order to generate target-birth density,the strict restricts on the appearing position of the birth targets exist in the GM-PHD filter.To solve the problems of the generation of the target-birth PHD and the track labeling in a nonlinear observation system,a new GM-PHD filter is proposed in which the measurements of sensors are used to generate the target-birth PHD, and the output state estimates of targets of the filter over time are associated with the additional identifying label in the output Gaussian components of the filter.The efficiency of the proposed algorithm is verified by simulations.
出处 《信号处理》 CSCD 北大核心 2011年第9期1281-1285,共5页 Journal of Signal Processing
基金 国防预研基金(9140C8004011007)资助课题
关键词 多目标跟踪 概率假设密度滤波器 新目标密度生成 身份标识 multitarget tracking probability hypothesis density filter target-birth density generation identifying label
  • 相关文献

参考文献10

  • 1Mahler R. Statistical muhisource-muhitarget information fusion [ M ]. Boston : Artech House Publishers ,2007.
  • 2Formann T E, Bar-Shalom, Scheffe. Sonar tracking of multiple target using joint probabilistic data association [J]. IEEE Journal of Oceanic Engineering,1983, 8(3) : 173-183.
  • 3Ozgur Erdinc, Peter Willett, Bar-Shalom Y. The bin-occu- pancy filter and its connection to the PHD Filters. Trans- actions on Signal Processing 2009,57 (11): 4232-4246.
  • 4Ba-Ngu Vo, Singh S, Doucet. Sequential Monte Carlo methods for multi-target filtering with random finite sets [ J ]. IEEE Transactions on Aerospace and Electronic Systems ,2005,41 (4) : 1224-1245.
  • 5Lin L, Bar-Shalom Y, Kirubarajan T. Tracking labeling and PHD filter for muhitarget tracking[ J ]. IEEE Trans- actions on Aerospace and Electronic Systems, 2006,42 ( 3 ) :778-795.
  • 6Ba-Ngu Vo, Wing-Kin Ma. The Gaussian mixture proba- bility hypothesis density filter [ J ]. IEEE Transactions on Signal Processing,2006,54( 11 ) :4091-4104.
  • 7Syed Ahmed Pasha, Ba-Ngu Vo, Hoang Duong Tuan, Wing-Kin ma. Wing-Kin Ma. A Gaussian mixture PHD filter for jump Markov system models[ J]. IEEE Transac- tions on Aerospace and Electronic Systems ,2009,45 ( 3 ) : 919-936.
  • 8Daniel Clark, Ba-Ngu Vo. Convergence analysis of the Gaussian mixture PHD filter[ J]. IEEE Transactions on Signal Processing ,2007,55 (4) : 1204-1212.
  • 9Kusha Panta, Daniel Clark, Ba-Ngu Vo. Data association and management for the Gaussian mixture probability hy- pothesis[ J ]. IEEE Transactions on Aerospace and Elec- tronic Systems ,2009,45 ( 3 ) : 1003-1016.
  • 10Syed Ahmed Pasha, Hoang Duong Tuan, Ba-Ngu Vo. Nonlinear Bayesian filtering using the unscented linear fractional transformation model [ J ]. IEEE Transactions on Signal Processing,2010,58 ( 2 ) :477-489.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部